精英家教网 > 高中数学 > 题目详情
3.在如图所示的几何体中,AF⊥平面ABCD,EF∥AB,四边形ABCD为矩形,AD=2,AB=AF=2EF=1,P是棱DF的中点.
(1)求证:BF∥平面ACP;
(2)求异面直线CE与AP所成角的余弦值;
(3)求二面角D-AP-C的余弦值.

分析 (1)连接BD交AC于O,连接OP,证明OP∥BF,然后证明BF∥平面ACP.
(2)以A为坐标原点建立空间直角坐标系A-xyz,求出相关点的坐标,求出$\overrightarrow{AP}=(0,1,\frac{1}{2})$,$\overrightarrow{CE}=(-\frac{1}{2},-2,1)$,利用向量的数量积求解,异面直线CE与AP所成角的余弦值.
(3)求出平面DAP的一个法向量,平面APC的一个法向量,利用空间向量的数量积求解二面角D-AP-C的余弦值即可.

解答 解:(1)连接BD交AC于O,连接OP∵四边形ABCD为矩形,

∴O为BD的中点,
又∵P是DF中点,
∴OP∥BF…(2分)∵OP?平面ACP,BF?平面ACP,
∴BF∥平面ACP…(3分)
(2)如图,以A为坐标原点建立空间直角坐标系A-xyz,
依题意得A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),$E(\frac{1}{2},0,1)$,F(0,0,1),$P(0,1,\frac{1}{2})$,…(4分)

易得$\overrightarrow{AP}=(0,1,\frac{1}{2})$,$\overrightarrow{CE}=(-\frac{1}{2},-2,1)$…(5分)$cos<\overrightarrow{CE},\overrightarrow{AP}>=\frac{{\overrightarrow{CE}•\overrightarrow{AP}}}{{|\overrightarrow{CE}|•|\overrightarrow{AP}|}}=-\frac{{2\sqrt{105}}}{35}$…(6分)
∴所求异面直线CE与AP所成角的余弦值为$\frac{{2\sqrt{105}}}{35}$…(7分)
(3)由题意可知:AB⊥面PAD,
平面DAP的一个法向量为$\overrightarrow{AB}=(1,0,0)$…(8分)
又可解得$\overrightarrow{AC}=(1,2,0),\overrightarrow{AP}=(0,1,\frac{1}{2})$
故设平面APC的一个法向量为$\overrightarrow n=(x,y,z)$
则$\left\{{\begin{array}{l}{\overrightarrow n•\overrightarrow{AC}=0}\\{\overrightarrow n•\overrightarrow{AP}=0}\end{array}}\right.$即$\left\{{\begin{array}{l}{x+2y=0}\\{y+\frac{1}{2}z=0}\end{array}}\right.$,不妨令x=2,可得$\overrightarrow n=(2,-1,2)$…(10分)
于是$cos<\overrightarrow{AB},\overrightarrow n>=\frac{{\overrightarrow{AB}•\overrightarrow n}}{{|\overrightarrow{AB}|•|\overrightarrow n|}}=\frac{2}{3}$,
所以二面角D-AP-C的余弦值为$\frac{2}{3}$…(12分)

点评 本题考查二面角的平面角的求法,异面直线所成角的求法,直线与平面平行的判定定理的应用,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知tan(π+θ)=-3,求4sin2θ-3sinθcosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列四条直线,倾斜角最大的是(  )
A.x=1B.y=x+1C.y=2x+1D.y=-x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的焦距为10,点P(1,2)在C的渐近线上,则C的方程为(  )
A.$\frac{x^2}{20}-\frac{y^2}{5}=1$B.$\frac{x^2}{5}-\frac{y^2}{20}=1$C.$\frac{x^2}{80}-\frac{y^2}{20}=1$D.$\frac{x^2}{20}-\frac{y^2}{80}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线$l:mx+y+3m-\sqrt{3}=0$与圆x2+y2=12交于A,B两点,若$|{AB}|=2\sqrt{3}$,则直线l在x轴上的截距为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆C1:x2+y2+2x+8y-8=0和圆C2:x2+y2-4x-5=0的位置关系为相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sin(α-β)cosβ+cos(α-β)sinβ=-m,且α为第四象限,则cosα的值为(  )
A.$\sqrt{1-{m^2}}$B.$-\sqrt{1-{m^2}}$C.$\sqrt{{m^2}-1}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=(x-x3)•2|x|在区间[-3,3]上的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.
公园
获得签名人数45603015
然后再各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.
(1)求此活动中各公园幸运之星的人数;
(2)若乙公园中每位幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(3)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
有兴趣无兴趣合计
25530
151530
合计402060
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
临界值表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
参考公式:K2=$\frac{k(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案