【题目】已知点是椭圆的左右顶点,点是椭圆的上顶点,若该椭圆的焦距为,直线,的斜率之积为.
(1)求椭圆的方程;
(2)是否存在过点的直线与椭圆交于两点,使得以为直径的圆经过点?若存在,求出直线的方程,若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】近年来随着素质教育的不断推进,高考改革趋势明显.国家教育部先后出台了有关高考的《学业水平考试》、《综合素质评价》、《加分项目瘦身与自主招生》三个重磅文件,引起社会极大关注,有人说:男孩苦,女孩乐!为了了解某地区学生和包括老师,家长在内的社会人士对高考改革的看法,某媒体在该地区选择了人,,就是否“赞同改革”进行调查,调查统计的结果如下表:
赞同 | 不赞同 | 无所谓 | |
在校学生 | |||
社会人士 |
已知在全体样本中随机抽取人,抽到持“不赞同”态度的人的概率为.
(1)现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,文应该在持“无所谓”态度的人中抽取多少人?
(2)在持“不赞同”态度的人中,用分层抽样方法抽取人,若从人中任抽人进一步深入调查,为更多了解学生的意愿,要求在校学生人数不少于社会人士人士,求恰好抽到两名在校学生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为,(t为参数),在以原点O为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,两点的极坐标分别为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)点是圆上任一点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018湖南(长郡中学、株洲市第二中学)、江西(九江一中)等十四校高三第一次联考】已知函数(其中且为常数, 为自然对数的底数, ).
(Ⅰ)若函数的极值点只有一个,求实数的取值范围;
(Ⅱ)当时,若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018山西太原市高三3月模拟】已知椭圆的左、右顶点分别为,右焦点为,点在椭圆上.
(I)求椭圆方程;
(II)若直线与椭圆交于两点,已知直线与相交于点,证明:点在定直线上,并求出定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的左、右焦点分别为,,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.
(Ⅰ)求椭圆的方程;
(Ⅱ),是椭圆上位于直线两侧的两点.若直线过点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小店每天以每份5元的价格从食品厂购进若干份食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还可以每份1元的价格退回食品厂处理.
(Ⅰ)若小店一天购进16份,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(Ⅱ)小店记录了100天这种食品的日需求量(单位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)小店一天购进16份这种食品,表示当天的利润(单位:元),求的分布列及数学期望;
(ii)以小店当天利润的期望值为决策依据,你认为一天应购进食品16份还是17份?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适当疏导电价矛盾,保障电力供应,支持可再生能源发展,促进节能减排,安徽省于2012年推出了省内居民阶梯电价的计算标准:以一个年度为计费周期、月度滚动使用,第一阶梯电量:年用电量2160度以下(含2160度),执行第一档电价0.5653元/度;第二阶梯电量:年用电量2161至4200度(含4200度),执行第二档电价0.6153元/度;第三阶梯电量:年用电量4200度以上,执行第三档电价0.8653元/度.
某市的电力部门从本市的用电户中随机抽取10户,统计其同一年度的用电情况,列表如下表:
用户编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年用电量(度) | 1000 | 1260 | 1400 | 1824 | 2180 | 2423 | 2815 | 3325 | 4411 | 4600 |
(Ⅰ)试计算表中编号为10的用电户本年度应交电费多少元?
(Ⅱ)现要在这10户家庭中任意选取4户,对其用电情况作进一步分析,求取到第二阶梯电量的户数的分布列与期望;
(Ⅲ)以表中抽到的10户作为样本估计全市的居民用电情况,现从全市居民用电户中随机地抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若与交于两点,点的极坐标为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com