精英家教网 > 高中数学 > 题目详情
10.有一个正三角形的两个顶点在抛物线y2=2px(p>0)上,另一顶点在原点,则该三角形的边长是(  )
A.2$\sqrt{3}$pB.4$\sqrt{3}$pC.6$\sqrt{3}$pD.8$\sqrt{3}$p

分析 由题意画出图形,写出OA所在直线方程,联立抛物线方程求出A的坐标,则三角形边长可求.

解答 解:如图,
由对称性可知,OA所在直线方程为$y=\frac{\sqrt{3}}{3}x$,
联立$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x}\\{{y}^{2}=2px}\end{array}\right.$,解得:A(6p,$2\sqrt{3}p$).
∴三角形的边长为4$\sqrt{3}p$.
故选:B.

点评 本题考查抛物线的简单性质,由对称性得到OA所在直线方程是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.学校有两个食堂,现有3名学生前往就餐,则三个人不在同一个食堂就餐的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,a,b,c分别为角A,B,C的对边,满足sinB(sinB+sinA)+(cosC-cosA)(cosC+cosA)=0,S△ABC=4$\sqrt{3}$,则ab=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.(1)已知点M与两个定点O(0,0)、P(2,0)的距离的比为$\sqrt{3}$:1,求点M的轨迹方程;
(2)已知过点Q(-1,0)的直线l截(1)中M的轨迹的弦长为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若4sin2α-5sinαcosα-cos2α=2,则tanα=3或$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:抛物线方程;y2=2px(p>0),经过原点O的直线;x+3y=0与抛物线交于点A,点B在抛物线上,且直线OB⊥OA,△AOB的面积为60.求:
(1)抛物线的方程;
(2)直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=2log${\;}_{\frac{1}{2}}$2x-2log${\;}_{\frac{1}{2}}$x+3的单调递增区间为[$\frac{\sqrt{2}}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A={x|$\frac{1}{2}$<2x<4},B={x|log2(x-1)<2}.
(1)求集合A和B
(2)求A∩B和A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=x2(x≥1)的反函数为(  )
A.$y=\sqrt{x}$(x≥1)B.$y=\sqrt{-x}$(x≤-1)C.$y=\sqrt{x}$(x≥0)D.$y=\sqrt{-x}$(x≤0)

查看答案和解析>>

同步练习册答案