精英家教网 > 高中数学 > 题目详情
11.下列各代数式中最小值是2的是(  )
A.x+$\frac{1}{x}$B.x2+2+$\frac{1}{{x}^{2}+2}$C.$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$D.x+2$\sqrt{x}$+3

分析 由基本不等式求最值的方法和二次函数知识,逐个选项验证可得.

解答 解:选项A,x的正负不定,故错误;
选项B,取等号时x2+2=1,无解,故错误;
选项C,原式=$\frac{{x}^{2}+1+1}{\sqrt{{x}^{2}+1}}$=$\sqrt{{x}^{2}+1}$+$\frac{1}{\sqrt{{x}^{2}+1}}$≥2,
当且仅当$\sqrt{{x}^{2}+1}$=$\frac{1}{\sqrt{{x}^{2}+1}}$即x=0时取等号,故正确;
选项D,配方可得原式=($\sqrt{x}$+1)2+2>2,故错误.
故选:C.

点评 本题考查基本不等式和二次函数求最值,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知集合M={1,2,m2-3m-1},N={-1,3},M∩N={3},求m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的定义域、值域:
(1)y=4x+2x+1+1;
(2)y=($\frac{1}{2}$)$\sqrt{{-x}^{2}+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.根据函数f(x)=|2x-1|-|x-1|的图象,可得其值域为[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知定义在[-3,3]上的函数y=f(x)是增函数.
(1)若f(m+1)>f(2m-1),求m的取值范围;
(2)若函数f(x)是奇函数,且f(2)=1,解不等式f(x+1)+1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1g$\frac{{x}^{2}-x+1}{{x}^{2}+1}$.
(1)判断函数f(x)在区间[-1,1]上的单调性;
(2)当t∈R时.求证:1g$\frac{7}{10}$≤f(|t-$\frac{1}{6}$|-|t+$\frac{1}{6}$|)≤lg$\frac{13}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,已知BD=2AD=4,AB=2$\sqrt{5}$,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等比数列{an}的前n项的和为Sn,若S6,S9,S3成等差数列,问2S3,S6,S12-S6能否成等比数列?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式lg(x2+8x+12)>lg(2x+19).

查看答案和解析>>

同步练习册答案