精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

【答案】B
【解析】解:∵函数f(x)=ln(1+|x|)﹣ 为偶函数,且在x≥0时,f(x)=ln(1+x)﹣
导数为f′(x)= + >0,
即有函数f(x)在[0,+∞)单调递增,
∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),
即|x|>|2x﹣1|,
平方得3x2﹣4x+1<0,
解得: <x<1,
所求x的取值范围是( ,1).
故选:B.
根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解甲、乙两名同学的数学学习情况,对他们的次数学测试成绩(满分分)进行统计,作出如下的茎叶图,其中处的数字模糊不清,已知甲同学成绩的中位数是,乙同学成绩的平均分是.

(1)求的值;

(2)现从成绩在之间的试卷中随机抽取两份进行分析,求恰抽到一份甲同学试卷的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C1:ρsin2θ=4cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C2的参数方程为: ,(θ∈[﹣ ]),曲线C: (t为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)C与C1相交于A,B,与C2相切于点Q,求|AQ|﹣|BQ|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市环保部门对市中心每天的环境污染情况进行调查研究后,发现一天中环境综合污染指数与时刻(时)的关系为,其中是与气象有关的参数,且.若用每天的最大值为当天的综合污染指数,并记作

1)令,求的取值范围;

2)求的表达式,并规定当时为综合污染指数不超标,求当在什么范围内时,该市市中心的综合污染指数不超标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(UA)∩B=(
A.?
B.{x| <x≤1}
C.{x|x<1}
D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过大年,吃水饺是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺作样本,检测其某项质量指标,检测结果如频率分布直方图所示.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数和方差(同一组中的数据用该组区间的中点值作代表);

(2)若该品牌的速冻水饺的某项质量指标Z服从正态分布其中近似为样本平均数近似为样本方差

①求Z落在内的概率;

若某人从某超市购买了1包这种品牌的速冻水饺,发现该包速冻水饺某项质量指标值为55,根据原则判断该包速冻水饺某项质量指标值是否正常

附:①

②若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,直线PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(I)求证:直线DE⊥平面PAC.
(Ⅱ)若直线PE与平面PAC所成的角的正弦值为 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(x+1)=﹣f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2 , 若在区间[﹣1,3]内,函数g(x)=f(x)﹣kx﹣k有4个零点,则实数k的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:

他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是

A. 289 B. 1 024 C. 1 225 D. 1 378

查看答案和解析>>

同步练习册答案