精英家教网 > 高中数学 > 题目详情
如图,已知正方形的边长为1,平面平面边上的动点。
(1)证明:平面;                    
(2)试探究点的位置,使平面平面
解:(1)∵ FD⊥平面ABCD,EB⊥平面ABCD
∴FD∥EB
又AD∥BC且AD∩FD=D,BC∩BE=B
∴平面FAD∥平面EBC,ME 平面EBC
∴ME∥平面FAD                          ……………………4分
(2)以D为坐标原点,分别以DA、DC、DF所在直线为x、y、z轴,建立空间直角坐标D-xyz,
依题意,得D(0,0,0),A(1,0,0),F(0,0,1),C(0,1,0),B(1,1,0),E(1,1,1),
设M(λ,1,0),平面AEF的法向量为=(x1,y1,z1),平面AME的法向量为=(x2,y2,z2)
=(0,1,1),=(-1,0,1), ∴   ∴ 
取z1=1,得x1=1,y1=-1  ∴=(1,-1,0) 
=(λ-1,1,0) ,=(0,1,1),
 ∴
取x2=1得y2=1-λ,z2=λ-1       ∴=(1,1-λ,λ-1)
若平面AME⊥平面AEF,则 ∴=0,
∴1-(1-λ)+(λ-1)=0,解得λ=
此时M为BC的中点.
所以当M在BC的中点时, AME⊥平面AEF.       ……………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)
已知矩形所在平面,为线段上一点,为线段 
的中点.(1)当E为PD的中点时,求证:
(2)当时,求证:BG//平面AEC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图示,四棱锥P----ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD = ,E为PD上一点,PE = 2ED.
(1)  求证:PA ^平面ABCD;
(2)  求二面角D---AC---E的正切值;
(3) 在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,
说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方体中,点为线段上的动点,点为线段上的动点,则与线段相交且互相平分的线段有(    )
A.0条B.1条
C.2条D.3条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四边形中(图1),的中点,将(图1)沿直线折起,使二面角(如图2)
(1)求证:平面
(2)求异面直线所成角的余弦值;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,FBE的中点,求证:

(1) FD∥平面ABC;
(2)AF⊥平面EDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如图,在四棱锥P-ABCD中,E为CD上的动点,四边形ABCD为       时,体积VP-AEB恒为定值(写上你认为正确的一个答案即可).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体-中,异面直线所成角的大小为  ▲

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)如图,在正方体中,的中点。
(Ⅰ)在上求一点,使平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案