精英家教网 > 高中数学 > 题目详情
4.已知$y=f(x)=2cos(2x-\frac{π}{6})+\sqrt{3}$,求:
(1)单调增区间、对称中心;
(2)当$x∈(-\frac{π}{4},\frac{π}{6})$时,求f(x)值域;
(3)当x∈[-π,π]时,解不等式y≥0.

分析 (1)由相位在余弦函数的增区间内求解x的范围得函数的增区间,再由相位的终边落在y轴上求解x的取值集合得到函数的对称中心;
(2)由x的范围求得$2x-\frac{π}{6}$的范围,进一步求得函数的值域;
(3)求解三角不等式,与x∈[-π,π]取交集得答案.

解答 解:(1)由$π+2kπ≤2x-\frac{π}{6}≤2π+2kπ$,解得$\frac{7π}{12}+kπ≤x≤\frac{13π}{12}+kπ$,
∴函数的单调增区间为$[\frac{7π}{12}+kπ,\frac{13π}{12}],k∈Z$;
由$2x-\frac{π}{6}=kπ+\frac{π}{2}⇒x=\frac{kπ}{2}+\frac{π}{3}$,故对称中心为$(\frac{kπ}{2}+\frac{π}{3},\sqrt{3}),k∈Z$;
(2)∵$x∈(-\frac{π}{4},\frac{π}{6})$,∴$-\frac{2π}{3}<2x-\frac{π}{6}<\frac{π}{6}$,
当$2x-\frac{π}{6}→-\frac{2π}{3}$时,${y_{min}}→f(-\frac{π}{4})=-1+\sqrt{3}$,
当$2x-\frac{π}{6}=0$时,${y_{max}}=f(\frac{π}{12})=2+\sqrt{3}$,
故值域$y∈(\sqrt{3}-1,\sqrt{3}+2]$;
(3)原不等式$?cos(2x-\frac{π}{6})≥-\frac{{\sqrt{3}}}{2}$,
∴$-\frac{5π}{6}+2kπ≤2x-\frac{π}{6}≤\frac{5π}{6}+2kπ$,解得$-\frac{π}{3}+kπ≤x≤\frac{π}{2}+kπ,k∈Z$,
令$k=-1,-\frac{4π}{3}≤x≤-\frac{π}{2}$,令$k=0,-\frac{π}{3}≤x≤\frac{π}{2}$,令$k=1,\frac{2π}{3}≤x≤\frac{3π}{2}$,
又∵-π≤x≤π,
取交集得原不等式解集为$x∈[-π,-\frac{π}{2}]∪[-\frac{π}{3},\frac{π}{2}]∪[\frac{2π}{3},π]$.

点评 本题考查三角函数的图象和性质,考查了复合函数的单调性,复合函数的单调性满足同增异减的原则,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.命题“?x0∈R,x0+1<0或x02-x0>0”的否定形式是(  )
A.?x0∈R,x0+1≥0或$x_0^2-{x_0}≤0$B.?x∈R,x+1≥0或x2-x≤0
C.?x0∈R,x0+1≥0且$x_0^2-{x_0}≤0$D.?x∈R,x+1≥0且x2-x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数$\frac{7-i}{1+i}$的共轭复数为(  )
A.-3+4iB.3+4iC.3-4iD.-3-4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线ax+y-1=0与圆C:(x-1)2+(y+a)2=1相交于A,B两点,且△ABC为等腰直角三角形,则实数a的值为-1或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)=a{log_2}x+a•{4^x}+3$在区间$(\frac{1}{2},1)$上有零点,则实数a的取值范围是(  )
A.a<-3B.$-\frac{3}{2}<a<-\frac{3}{4}$C.$-3<a<-\frac{3}{4}$D.$-\frac{3}{2}<a<-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左右顶点分别为A、B,点P为椭圆上异于A,B的任意一点.
(Ⅰ)求直线PA与PB的斜率乘积的值;
(Ⅱ)设Q(t,0)(t≠$\sqrt{3}$),过点Q作与x轴不重合的任意直线交椭圆E于M,N两点,则是否存在实数t,使得以MN为直径的圆恒过点A?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设半径为3的圆C被直线l:x+y-4=0截得的弦AB的中点为P(3,1),且弦长$|{AB}|=2\sqrt{7}$,则圆C的标准方程(x-4)2+(y-2)2=9,或(x-2)2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数在给定范围内的最大值、最小值:
(1)f(x)=x2+(1-x)2,0≤x≤2;
(2)f(x)=x3-9x2-48x+52,-2≤x≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.半径为R的半圆卷成一个圆锥,则圆锥的底面半径为$\frac{R}{2}$,它的体积为$\frac{{\sqrt{3}}}{24}{R^3}$.

查看答案和解析>>

同步练习册答案