精英家教网 > 高中数学 > 题目详情

【题目】fx)=loga1+x+loga3x)(a0a≠1)且f1)=2

1)求a的值及fx)的定义域;

2)求fx)在区间[0,]上的最大值和最小值.

【答案】1a2,定义域为(﹣1,3);(2)最大值为f1)=2,最小值为f0)=log23

【解析】

1)根据,代值计算即可求得,再根据真数大于零,求得函数定义域;

2)先求解的值域,再据此求函数的值域.

1)由题意知,

解得﹣1x3

fx)的定义域为(﹣1,3);

再由f1)=2得,

loga1+1+loga31)=2

a2.

综上所述:函数定义域为.

2fx)=log21+x)(3x),

x[0,]

∴(1+x)(3x[3,4]

fx)在区间[0,]上的最大值为f1)=2

fx)在区间[0,]上的最小值为f0)=log23

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,椭圆的长轴为短轴,且两个椭圆的离心率相同,设O为坐标原点,点AB分别在椭圆上,若,则直线AB的斜率k为( .

A.1B.-1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在内),得到的频率分布直方图如图所示.

1)求出图中的值,并估计这名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);

2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在时间段内应抽出多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三位数,个位、十位、百位上的数字依次为xyz,当且仅当yxyz时,称这样的数为凸数”(243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是凸数的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是棱长为2的正方形,EAD的中点,以CE为折痕把DEC折起,使点D到达点P的位置,且点P的射影O落在线段AC上.

1)求

2)求几何体PABCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知拋物线C经过点,其焦点为FM为抛物线上除了原点外的任一点,过M的直线lx轴、y轴分别交于AB两点.

求抛物线C的方程以及焦点坐标;

的面积相等,证明直线l与抛物线C相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知是以点为圆心的圆上的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为,若圆上存在点,使得,其中点,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若处的切线与直线平行,求的值;

2)讨论函数的单调区间;

3)若函数的图象与轴交于AB两点,线段AB中点的横坐标为,证明

查看答案和解析>>

同步练习册答案