精英家教网 > 高中数学 > 题目详情
9.下列各组函数中,表示同一函数的是(  )
A.f(x)=2x-1•2x+1,g(x)=4xB.$f(x)=\sqrt{x^2},g(x)={({\sqrt{x}})^2}$
C.$f(x)=\frac{{{x^2}-2}}{{x-\sqrt{2}}},g(x)=x+\sqrt{2}$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

分析 判断两个函数的定义域是否相同,对应法则是否相同即可.

解答 解:f(x)=2x-1•2x+1=4x,g(x)=4x两个函数的定义域相同,对应法则相同,所以是相同函数.
$f(x)=\sqrt{{x}^{2}},g(x)={(\sqrt{x})}^{2}$两个函数的定义域不相同,所以不是相同函数.
$f(x)=\frac{{x}^{2}-2}{x-\sqrt{2}},g(x)=x+\sqrt{2}$两个函数的定义域不相同,所以不是相同函数.
$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x}^{2}-1}$两个函数的定义域不相同,所以不是相同函数.
故选:A.

点评 本题考查两个函数是否相同的判断,考查定义域以及对应法则的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列说法正确的个数有(  )个.
(1)若α,β垂直于同一平面,则α与β平行;
(2)“如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β”的逆否命题为真命题;
(3)“若m>2,则方程$\frac{x^2}{m-1}+\frac{y^2}{2-m}$=1表示双曲线”的否命题为真命题;
(4)“a=1”是“直线l1:ax+2y=0与直线l2:x+(a+1)y+4=0平行”的充分不必要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为$\sqrt{2}-1$,求椭圆的方程$\frac{x^2}{2}+{y^2}=1或\frac{y^2}{2}+{x^2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x+$\frac{1}{x}$=2cosθ,计算x2+$\frac{1}{{x}^{2}}$,x3+$\frac{1}{{x}^{3}}$.并由计算的结果猜想xn+$\frac{1}{{x}^{n}}$的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=$\frac{m+i}{1+i}({m∈R})$为纯虚数,则m=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的方程${({\frac{2}{3}})^x}=\frac{1+a}{1-a}$有负实数根,则a的取值范围是(  )
A.(-1,1)B.(0,1)C.(-1,0)D.$({-\frac{2}{3},\frac{2}{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x+2≥0,x∈R},集合$B=\left\{{x|\frac{x-1}{x+1}≥2}\right\}$.
(1)求集合A∩B,A∪B;
(2)求集合(∁uA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x|x-a|,0≤x≤1的最大值是g(a),求g(a)的解析式,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某批发公司批发某商品,每个商品进价80元,批发价120元.该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价每个不能低于100元.
(1)当一次订购量为多少个时,每个商品的实际批发价为100元?
(2)当一次订购量为x(x∈N)个,每件商品的实际批发价为P元,写出函数P=f(x)的表达式;
(3)根据市场调查发现,经销商一次最大定购量为500个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.

查看答案和解析>>

同步练习册答案