(本题满分12分)
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1)
纪念币 | A | B | C | D |
概率 | 1/2 | 1/2 | a | a |
这四个纪念币同时投掷一次,设ξ表示出正面向上的个数。
(1)求概率p(ξ)
(2)求在概率p(ξ),p(ξ=2)为最大时,a的取值范围。
(3)求ξ的数学期望。
a∈[] ,2a+1
解:
(1)p(ξ个正面向上,4-ξ个背面向上的概率,其中ξ可能取值为0,1,2,3,4。
∴p(ξ=0)= (1-)2(1-a)2=(1-a)2
p(ξ=1)= (1-)(1-a)2+(1-)2·a(1-a)= (1-a)
p(ξ=2)= ()2(1-a)2+(1-)a(1-a)+ (1-)2· a2=(1+2a-2 a2)
p(ξ=3)= ()2a(1-a)+ (1-) a2=
p(ξ=4)= ()2 a2=a2 ……………………………………5分
(2) ∵0<a<1,∴p(ξ=1) <p(ξ=1),p(ξ=4) <p(ξ=3)
则p(ξ=2)- p(ξ=1)= (1+2a-2 a2)- =-≥0
由
,即a∈[] ……………………9分
(3)由(1)知ξ的数学期望为
Eξ=0×(1-a)2+1×(1-a)+2×(1+2a-2a2)+3×+4×=2a+1………………12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com