精英家教网 > 高中数学 > 题目详情
19.在△ABC中,内角A,B,C的对边分别是a,b,c,向量$\overrightarrow m=({\frac{a}{2},\frac{c}{2}}),\overrightarrow n=({cosC,cosA})$,且$\overrightarrow n•\overrightarrow m=bcosB$.
(1)求B的值;
(2)若$cos\frac{A-C}{2}=\sqrt{3}sinA$,且$|{\overrightarrow m}|=\sqrt{5}$,求△ABC的面积.

分析 (1)由$\overrightarrow{n}•\overrightarrow{m}=bcosB$进行数量积的坐标运算,并由正弦定理即可求出$cosB=\frac{1}{2}$,从而得到$B=\frac{π}{3}$;
(2)可得到C=$\frac{2π}{3}-A$,从而由$cos\frac{A-C}{2}=\sqrt{3}sinA$求出tanA=$\frac{\sqrt{3}}{3}$,进而得出C=$\frac{π}{2}$,从而有c=2a①,并且根据条件有a2+c2=20②,这样联立①②即可求出a,c,进而求出b的值,从而可求出△ABC的面积.

解答 解:(1)$\overrightarrow{n}•\overrightarrow{m}=bcosB$;
∴$\frac{a}{2}cosC+\frac{c}{2}cosA=bcosB$;
∴sinAcosC+cosAsinC=2sinBcosB;
∴sin(A+C)=2sinBcosB;
即sinB=2sinBcosB;
∵0<B<π;
∴sinB≠0;
∴$cosB=\frac{1}{2}$;
∴$B=\frac{π}{3}$;
(2)C=π-A-B=$\frac{2π}{3}-A$;
由$cos\frac{A-C}{2}=\sqrt{3}sinA$得,$cos(A-\frac{π}{3})=\sqrt{3}sinA$;
∴$\frac{1}{2}cosA+\frac{\sqrt{3}}{2}sinA=\sqrt{3}sinA$;
∴$cosA=\sqrt{3}sinA$;
∴$tanA=\frac{\sqrt{3}}{3}$;
∵$0<A<\frac{2π}{3}$;
∴$A=\frac{π}{6}$;
∴$C=\frac{π}{2}$;
在Rt△ABC中,$a=\frac{1}{2}c$,即c=2a;
又$|\overrightarrow{m}|=\sqrt{5}$;
即$\frac{{a}^{2}+{c}^{2}}{4}=5$;
∴5a2=20;
∴a=2,c=4;
∴$b=2\sqrt{3}$;
∴${S}_{△ABC}=\frac{1}{2}×2×2\sqrt{3}=2\sqrt{3}$.

点评 考查数量积的坐标运算,正弦定理,两角和差的正余弦公式,以及已知三角函数值求角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足a1=1,a2=2,${a_{n+2}}=(1+{sin^2}\frac{nπ}{2}){a_n}+n•cos\frac{nπ}{2}$,则该数列的前20项和为1033.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$与$\overrightarrow b$共线,则x=(  )
A.2B.-2C.$-2+\sqrt{5}$D.$-2-\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:解答题

设等差数列的前项和为,且

(1)求数列的通项公式;

(2)设数列,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛掷两枚质地的骰子,得到的点数分别为a,b,那么直线bx+ay=1的斜率$k≥-\frac{2}{5}$的概率是(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{2}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.二项式(x+1)10的展开式中,x4的系数为210.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列判断错误的是(  )
A.“am2<bm2”是“a<b”成立的充分不必要条件
B.命题“?x∈R,x3-x2-1≤0”的否定是“?x0∈R,x03-x02-1>0”
C.“若a=1,则直线x+y=0和直线x-ay=0互相垂直”的逆否命题为真命题
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b,c是递减的等差数列,若将其中两个数的位置互换,得到一个等比数列,则$\frac{b}{a+c}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由直线y=x+1上一点向圆x2-6x+y2+8=0引切线,则切线长的最小值为$\sqrt{7}$.

查看答案和解析>>

同步练习册答案