精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥D-ABC的体积

(2)求证:平面DAC⊥平面DEF;

(3)若MDB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF

【答案】(1);(2)见解析;(3)见解析.

【解析】试题分析:(1)根据等积法利用求解。(2)由题意得,又所以再线面垂直的判定得,从而。又根据题意得到,从而,根据面面垂直的判定可得平面DAC⊥平面DEF(3)于点则得从而有根据线面平行的判定定理可得MN∥平面DEF

试题解析:

1)因为

所以是点到平面的距离,

所以

2)因为是正三角形, 的中点,

所以

因为

所以

又因为

所以,且,

所以

因为

所以

所以,

又因为 ,

所以

因为

所以

3)连于点则得

又因为

所以在面

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m个正数a1 , a2 , …,am(m≥4,m∈N*)依次围成一个圆圈.其中a1 , a2 , a3 , …ak1 , ak(k<m,k∈N*)是公差为d的等差数列,而a1 , am , am1 , …,ak+1 , ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1 , a2 , …,am的所有项的和Sm
(2)若a1=d=2,m<2015,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak1+ak=3(ak+1+ak+2+…+am1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c. ,且
(Ⅰ)求A的大小;
(Ⅱ)若a=1, .求SABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱台中, 分别是棱长为1与2的正三角形,平面平面,四边形为直角梯形, 中点, ).

(1)设中点为 ,求证: 平面

(2)若到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DEAB,AB为短轴,OC为长半轴

(1)求梯形ABDE上底边DE与高OH长的关系式;

(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥D-ABC的体积

(2)求证:平面DAC⊥平面DEF;

(3)若MDB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某智能手机制作完成之后还需要依次通过三道严格的审核程序,第一道审核、第二道审核、第三道审核通过的概率分别为,每道程序是相互独立的,且一旦审核不通过就停止审核,每部手机只有三道程序都通过才能出厂销售.

(1)求审核过程中只通过两道程序的概率;

(2)现有3部该智能手机进入审核,记这3部手机可以出厂销售的部数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 两点,且圆心在直线.

1)求圆的方程;

2)若直线过点且被圆截得的线段长为,求的方程.

查看答案和解析>>

同步练习册答案