【题目】已知椭圆的离心率为,右焦点为,左顶点为A,右顶点B在直线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点P是椭圆C上异于A,B的点,直线交直线于点,当点运动时,判断以为直径的圆与直线PF的位置关系,并加以证明.
【答案】(Ⅰ);(Ⅱ)以BD为直径的圆与直线PF相切.
【解析】
(Ⅰ)根据条件解得a,b值,(Ⅱ)设点P(x0,y0),解得D点坐标,即得以BD为直径的圆圆心坐标以及半径,再根据直线PF方程,利用圆心到直线PF距离与半径大小关系作判断.
(Ⅰ)依题可知B(a,0),a=2,因为,所以c=1,
故椭圆C的方程为.
(Ⅱ)以BD为直径的圆与直线PF相切.
证明如下:设点P(x0,y0),则
①当x0=1时,点P的坐标为(1,±),直线PF的方程为x=1,
D的坐标为(2,±2).
此时以BD为直径的圆与直线PF相切.
②当≠1时直线AP的方程为,
点D的坐标为,BD中点E的坐标为,故
直线PF的斜率为,
故直线PF的方程为,即,
所以点E到直线PF的距离,故以BD为直径的圆与直线PF相切.
综上得,当点P运动时,以BD为直径的圆与直线PF相切.
科目:高中数学 来源: 题型:
【题目】在一次抽奖活动中,有,,,,,共6人获得抽奖机会,抽奖规则如下:若获一等奖后不再参加抽奖,获得二等奖的仍参加三等奖抽奖.现在主办方先从6人中随机抽取2人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这4人中随机抽取1人获三等奖.
(1)求能获一等奖的概率;
(2)若,已获一等奖,求能获奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,在区间上有最大值,最小值,设函数.
(1)求的值;
(2)不等式在上恒成立,求实数的取值范围;
(3)方程有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左右焦点分别为,,,为椭圆上的两动点,且以,,,四个点为顶点的凸四边形的面积的最大值为.
(1)求椭圆的离心率;
(2)若椭圆经过点,且直线的斜率是直线,的斜率的等比中项,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点作互相垂直的直线,,交正半轴于点,交正半轴于点,则线段中点轨迹方程为_______________________;过原点与、、四点的圆半径的最小值为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,,,,四边形为矩形,平面平面,,点在线段上运动,且.
(1)当时,求异面直线与所成角的大小;
(2)设平面与平面所成二面角的大小为(),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,用四种不同的颜色给图中的A,B,C,D,E,F,G七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )
A.192B.336C.600D.以上答案均不对
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com