精英家教网 > 高中数学 > 题目详情

【题目】有一容积为的正方体容器,在棱和面对角线的中点各有一小孔,若此容器可以任意放置,则其可装水的最大容积是(

A.B.C.D.

【答案】C

【解析】

分别讨论水面过直线时从正方体截去的几何体体积的最小值,即可得出此容器可装水的最大容积.

当水面过直线时,如下图所示,

水面截去正方体所得几何体为三棱柱

当点在水面上方或水面上时,容器中的水不会漏,且当点与点重合时,截去的几何体体积最小为

当水面过直线时,如下图所示,

水面截去正方体所得几何体为三棱台

当点在水面上方或水面上时,容器中的水不会漏,且当点在直线上时,截去的几何体为三棱柱,且体积最小为

当水面过直线时,如下图所示,

当点在水面上方或水面上时,容器中的水不会漏,此时水面截去正方体所得几何体为,且直线过点,易知梯形的面积为正方形面积的一半,此时,几何体的体积为.

与直线重合时,如下图所示,

此时,点在水面上方,容器不会漏水,水面截去正方体所得几何体为三棱锥

该三棱锥的体积为.

综上可知,水面截去截去正方体所得几何体体积的最小值为.

因此,该容器可装水的最大容积是.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①、②、③)三个区域面积彼此相等.(已知:椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆面积为

(1)求椭圆的离心率的值;

2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的周期为,图象的一个对称中心为.将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移个单位长度后得到函数的图象.

(1)求函数的解析式.

(2)定义:当函数取得最值时,函数图象上对应的点称为函数的最值点,如果函数的图象上至少有一个最大值点和一个最小值点在圆的内部或圆周上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位长度后得到函数的图象,分别是的极值点,且有,则函数 ( )

A.在区间上单调递增B.在区间上单调递增

C.在区间上单调递减D.在区间上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.

网络

月租费

本地话费

长途话费

甲:联通

/

/

乙:移动“神州行”

/

/

若王先生每月拨打本地电话的时间是拨打长途电话时间的倍,若要用联通应最少打多长时间的长途电话才合算.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,R为切点的D的切线的斜率为,外一点A(不在x轴上)的切线,BC为切点,作平行于的切线(切点为D),MN分别是与的交点(如图).

(1)BC的纵坐标st表示直线的斜率;

(2)设三角形面积为S,若将由过外一点的两条切线及第三条切线(平行于两切线切点的连线)围成的三角形叫做切线三角形”,,再由MN切线三角形”,并依这样的方法不断作切线三角形…,试利用切线三角形的面积和计算由抛物线及所围成的阴影部分的面积T.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,侧面⊥底面,底面为直角梯形,//的中点.

(Ⅰ)求证:PA//平面BEF;

(Ⅱ)若PCAB所成角为,求的长;

(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)经过椭圆左焦点的直线(不经过点且不与轴重合)与椭圆交于两点,与直线:交于点,记直线的斜率分别为.则是否存在常数,使得向量 共线?若存在求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.

1)求从A,B,C三个行政区中分别抽取的社区个数;

2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.

查看答案和解析>>

同步练习册答案