精英家教网 > 高中数学 > 题目详情

如图,在四面体中,,点分别是的中点.

(1)EF∥平面ACD;
(2)求证:平面⊥平面
(3)若平面⊥平面,且,求三棱锥的体积.

(1)详见解析;(2)详见解析;(3)

解析试题分析:(1)由直线和平面平行的判定定理,只需在平面内找一条直线与平面外直线平行,由的中位线,知;(2)由平面和平面垂直的判定定理,只需在一个平面内找另一个平面的垂线即可,由的中点,可得,又,知,且=
,所以,又,从而平面⊥平面;(3)由已知面⊥平面,则在一个平面内垂直于交线的直线,必垂直于另一个平面,由面平面=,且,所以,∴,只需求的面积即可.
试题解析:(1)∵EF是△BAD的中位线,所以EF∥AD(2分),又EF?平面ACD,AD?平面ACD
∴EF∥平面ACD;
(2)∵EF∥AD,AD⊥BD,∴BD⊥EF,又∵BD⊥CF∴BD⊥面CEF,又BD?面BDC,∴面EFC⊥面BCD;
(3)因为面ABD⊥面BCD,且AD⊥BD,所以AD⊥面BCD,由BD=BC=1和CB=CD得△BCD是正三角形,所以.
考点:1、直线和平面平行的判定定理;2、面面垂直的判定和性质定理;3、几何体的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知平面,四边形是矩形,,点分别是的中点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:平面
(Ⅲ)若点为线段中点,求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点

(Ⅰ)证明:BC1//平面A1CD;
(Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(Ⅰ)求证:EM∥平面ABC;
(Ⅱ)求出该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用斜二测画法画出右图中五边形ABCDE的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中点,F是AB中点,AC = 1,BC = 2,AA1 = 4.

(1)求证:CF∥平面AEB1;(2)求三棱锥C-AB1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥中,是正方形,E是的中点,

(1)若,求 PC与面AC所成的角
(2) 求证:平面
(3) 求证:平面PBC⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某几何体的三视图和直观图如图所示.

(Ⅰ)求证:平面平面
(Ⅱ)若是线段上的一点,且满足,求的长.

查看答案和解析>>

同步练习册答案