精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ex+a-lnx.
(1)若函数f(x)在x=1处取得极值,求实数a的值;
(2)当a≥-2时,证明:f(x)>0.

分析 (1)求出函数的导数,计算f′(1)=0,求出a的值即可;(2)问题转化为证明ex-2-lnx>0,令g(x)=ex-2-lnx(x>0),根据函数的单调性证明即可.

解答 解:(1)函数f(x)=ex+a-lnx定义域为(0,+∞),
$f'(x)={{e}^{x+a}}-\frac{1}{x}$,
由已知得f′(1)=0,即:ea+1-1=0,所以a=-1;                                   
  (2)由于a≥-2,所以ex+a≥ex-2
所以只需证明ex-2-lnx>0,
令g(x)=ex-2-lnx(x>0),则g′(x)=ex-2-$\frac{1}{x}$,
所以g′(x)在(0,+∞)上为增函数,
而g′(1)=e-1-1<0,g′(2)=1-$\frac{1}{2}$>0,
所以g′(x)在(0,+∞)上有唯一零点x0
且x0∈(1,2),
当x∈(0,x0)时,g′(x)<0,当x∈(x0,+∞)时,g′(x)>0,
所以g(x)的最小值为g(x0),
由g′(x0)=${e}^{{x}_{0}-2}$-$\frac{1}{{x}_{0}}$=0,
得:${e}^{{x}_{0}-2}$=$\frac{1}{{x}_{0}}$,lnx0=2-x0
所以g(x0)=${e}^{{x}_{0}-2}$-lnx0=$\frac{1}{{x}_{0}}$+x0-2≥0,
而x0∈(1,2),所以g(x0)>0,所以g(x)>g(x0)>0,
即:ex-2-lnx>0,所以,当a≥-2时,f(x)>0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的周期为π,其图象向右平移$\frac{2π}{3}$个单位后得到函数g(x)=cosωx的图象,则φ等于(  )
A.$-\frac{π}{6}$B.$\frac{π}{6}$C.$-\frac{π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.满足 f ( x )=f′( x )的函数是(  )
A.f ( x )=1-xB.f ( x )=xC.f ( x )=0D.f ( x )=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆x2+y2-4x+3=0与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线相切,则双曲线的离心率为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$2\sqrt{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,M,N均为正数,且a≠1,试着利用指数的运算性质,证明:$log_a^{(MN)}=log_a^M+log_a^N$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{\sqrt{10}}{10}$,则实数m=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,右焦点为($\sqrt{3}$,0).
(1)求椭圆C的方程;
(2)过原点O作两条互相垂直的射线,与椭圆交于A,B两点,求证:点O到直线AB的距离为定值;
(3)在(2)的条件下,求△OAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a=({1,sinx})$,$\overrightarrow b=({cos({2x+\frac{π}{3}}),sinx})$,函数f(x)=$\overrightarrow a•\overrightarrow b-\frac{1}{2}$cos2x.
(1)求函数f(x)的解析式及其单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若c=$\sqrt{3}$且f(C)=0,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0,b>0,且$\sqrt{3}$为3a与3b的等比中项,则$\frac{ab}{4a+9b}$的最大值为(  )
A.$\frac{1}{24}$B.$\frac{1}{25}$C.$\frac{1}{26}$D.$\frac{1}{27}$

查看答案和解析>>

同步练习册答案