精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a.设函数F(x)=[f(x)]2-[f(-x)]2,且F(x)不恒等于0,则对于F(x)有如下说法:

①定义域为[-b,b];②是奇函数;③最小值为0;④在定义域内单调递增.

其中正确说法的个数有

A.4                   B.3                   C.2                   D.1

C

解析:∵f(x)的定义域为[a,b],∴f(-x)的定义域为[-b,-a].∵0<b<-a,

∴F(x)=[f(x)]2-[f(-x)]2的定义域为[-b,b],①正确.

F(-x)=[f(-x)]2-[f(x)]2=-F(x),∴F(x)为奇函数,②正确.

③④用数形结合易知不正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的最大值;
(3)比较20092010与20102009的大小,并说明为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

同步练习册答案