精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线与圆相切,圆心的坐标为

1)求圆的方程;

2)设直线与圆没有公共点,求的取值范围;

3)设直线与圆交于两点,且,求的值.

【答案】(1) (2) (3)

【解析】

1)利用直线和圆相切可求圆的半径,从而得到圆的标准方程.

2)利用圆心到直线的距离大于半径可求的取值范围.

3)设,由可得,联立直线方程和圆的方程,消去后利用韦达定理化简得到一个与有关的方程,解方程后可求的值.

解:(1)设圆的方程是为圆的半径),

为圆心的圆与直线相切,

∴所求圆的半径

∴所求的圆方程是

2)圆心到直线的距离

与圆没有公共点,

,解得

的取值范围为.

3)设

消去,得到方程

由已知可得,判别式,化简得

由于,可得

由①②得,故,它们满足

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的顶点坐标分别是的外接圆为.

1)求圆的方程;

2)在圆上是否存在点,使得?若存在,求点的个数:若不存在,说明理由;

3)在圆上是否存在点,使得?若存在,求点的个数:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行了一次考试,从学生中随机选取了人的成绩作为样本进行统计.已知这些学生的成绩全部在分至分之间,现将成绩按如下方式分成组:第一组,第二组,.......,第六组,并据此绘制了如图所示的频率分布直方图.

(1)估计这次月考数学成绩的平均分和众数;

(2)从成绩大于等于分的学生中随机抽取人,求至少有名学生的成绩在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且经过点M(1)

1)求椭圆C的标准方程;

2)已知直线l不过点P(01),与椭圆C交于AB两点,记直线PAPB的斜率分别为k1k2,且满足k1k21,求证:直线l过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)求证: .

2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

sin213°cos217°sin13°cos17°

sin215°cos215°sin15°cos15°

sin218°cos212°sin18°cos12°

sin2(18°)cos248°sin(18°)cos48°

sin2(25°)cos255°sin(25°)cos55°.

试从上述五个式子中选择一个,求出这个常数;

根据的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将120302030个自然数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列,则此数列共有(

A.168B.169C.170D.171

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,曲线的参数方程为为参数),以轴的非负半轴为极轴,原点为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线 分别与曲线相交于两点(两点异于坐标原点).

(1)求曲线的普通方程与两点的极坐标;

(2)求直线的极坐标方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为离心率为为圆的圆心.

(1)求椭圆的方程;

(2)已知过椭圆右焦点的直线交椭圆于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程恰有四个不同的实数根当函数时,实数的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案