精英家教网 > 高中数学 > 题目详情
9.解关于x的不等式ax2-(a+2)x+2<0(a∈R).

分析 讨论a=0,a>0和a<0时,原不等式的解集分别是什么即可.

解答 解:①若a=0,则原不等式变为-2x+2<0即x>1
此时原不等式解集为{x|x>1};  …(2分)
②若a>0,则
ⅰ)$\frac{2}{a}$>1,即0<a<2时,原不等式的解集为{x|1<x<$\frac{2}{a}$};
ⅱ)$\frac{2}{a}$=1,即a=2时,原不等式的解集为∅;
ⅲ)$\frac{2}{a}$<1,即a>2时,原不等式的解集为{x|$\frac{2}{a}$<x<1};  …(6分)
③若a<0,则原不等式变为(-ax+2)(x-1)>0,
解得x>1或x<$\frac{2}{a}$,
原不等式的解集为{x|x<$\frac{2}{a}$或x>1}.          …(8分)

点评 本题考查了含有字母系数的不等式的解法与应用问题,也考查了分类讨论思想的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{y^2}{3}-{x^2}$=1的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.要得到函数y=sin(3x-$\frac{π}{3}$)的图象,只要将函数y=sin3x的图象(  )
A.向左平行移动$\frac{π}{3}$个单位B.向左平行移动$\frac{π}{9}$个单位
C.向右平行移动$\frac{π}{3}$个单位D.向右平行移动$\frac{π}{9}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知ccosB=(2a-b)cosC.
(1)求角C的大小;
(2)若AB=4,求△ABC的面积S的最大值,并判断当S最大时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的函数y=f(x)是减函数,且对任意的a∈R,都有f(-a)+f(a)=0,若x、y满足不等式f(x2-2x)+f(2y-y2)≤0,则当1≤x≤4时,x-3y的最大值为(  )
A.10B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=2,公比为q,且b2+S2=16,4S2=qb2
(1)求an与bn
(2)设数列{cn}满足cn=$\frac{1}{{S}_{n}}$,求cn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,
①A<B?sinA<sinB;
②若a,b,c为△ABC的三边且a=$\sqrt{3}$,B=2A,则b的取值范围是($\sqrt{3},2\sqrt{3}$);
③若O为△ABC所在平面内异于A、B、C的一定点,动点P满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(${\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|sinB}}+\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|sinC}}}$)(λ∈R),则动点P必过△ABC的内心;
④△ABC的三边构成首项为正整数,公差为1的等差数列,且最大角是最小角的两倍,则最小角的余弦值为$\frac{3}{4}$.
其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法中正确的是(1)(2)(5)
(1)用相关指数R2来刻画回归的效果时,R2取值越大,则残差平方和越小,模型拟合的效果就越好;
(2)已知a,b∈R,则|a|>|b|是使$\frac{a}{b}$>1成立的必要不充分条件;
(3)命题p:?x∈R,x-2>lgx;命题q:?x∈R,x2>0,则命题p∧(?q)是假命题;
(4)4封不同的信,投到3个不同的邮筒中,则不同的投放种数为A43
(5)(1-x-5y)5的展开式中不含y项的系数和为0
(6)4张不同的高校邀请函,分发给3位同学每人至少1张,则不同的发放种数为3A43

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,正方形BCDE的边长为a,已知AB=$\sqrt{3}$BC,将直角△ABE沿BE边折起,A点在平面BCDE上的射影为D点,则对翻折后的几何体中有如下描述:
①AB与DE所成角的正切值是$\sqrt{2}$;
②三棱锥B-ACE的体积是$\frac{1}{6}$a3
③直线BA与平面ADE所成角的正弦值为$\frac{1}{3}$.
④平面EAB⊥平面ADE.
其中错误叙述的是③.

查看答案和解析>>

同步练习册答案