精英家教网 > 高中数学 > 题目详情
已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为
 
考点:旋转体(圆柱、圆锥、圆台)
专题:空间位置关系与距离
分析:根据圆角轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,则不难得到本题的答案.
解答: 解:∵圆锥的轴截面是正三角形ABC,边长等于2
∴圆锥的高AO=
3
2
×2=
3

底面半径r=
1
2
×2=1
因此,该圆锥的体积V=
1
3
πr2•AO=
1
3
π×12×
3
=
3
3
π

故答案为:
3
3
π
点评:本题给出圆锥轴截面的形状,求圆锥的体积,着重考查了等边三角形的性质和圆锥的轴截面等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex+x2,则f′(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
x2-(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=-
1
2
e2
(1)求b;
(2)若对任意x∈[
1
e
,+∞),f(x)有且只有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图如图所示,则该几何体的体积为(  )
A、4
B、
8
3
C、8
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
a
b
=10,|
a
+
b
|=5
2
,则|
b
|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将正整数按下表的规律排列,把行与列交叉处的一个数称为某行某列的数,记作aij(i,j∈N*),如第2行第4列的数是15,记作a24=15,则a82
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,P为双曲线右支上的一点,且|PF1|=2|PF2|.若△PF1F2为等腰三角形,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正项数列{an}满足lgan+1=1+lgan,且a2001+a2002+…+a2010=2014,则a2011+a2012+…+a2020的值为(  )
A、2014•1010
B、2014•1011
C、2015•1010
D、2015•1011

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,sinθ)与
b
=(1,cosθ)互相平行,其中θ∈(0,
π
2
).
(1)求sinθ和cosθ的值;
(2)若sin(θ-φ)=
10
10
,0<φ<
π
2
,求cosφ的值.

查看答案和解析>>

同步练习册答案