精英家教网 > 高中数学 > 题目详情
已知a∈R,则“a>2”是“a2>2a”成立的(  )
A、充分必要条件
B、必要而不充分条件
C、充分而不必要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义结合不等式的性质进行判断即可.
解答: 解:由a2>2a得a>2或a<0,
则“a>2”是“a2>2a”成立的充分不必要条件,
故选:C.
点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用C(A)表示非空集合A中的元素,定义A*B=
C(A)-C(B),C(A)≥C(B)
C(B)-C(A),C(A)<C(B)
,若A={1,2},B={x|(x2-mx)(x2+mx-2)=0},且A*B=1,则实数m的所有可能取值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
3•2x-1,x<2
log3(x2-1),x≥2
,则f(f(2))=
 
;若f(a)=3,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α+β)=-1,且tanα=2,则tanβ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=1,且an+1=2an+n-2×3n-1-1,数列{bn}的前n项和Sn=2n-1,求数列{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:实数x满足(x-a)(x-3a)<0,其中a>0;条件q:实数x满足x2-5x+6<0.
(Ⅰ)若a=1,且“p∧q”为真,求实数x的取值范围;
(Ⅱ)若q是p的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD的三个顶点的坐标分别为A(2,3)、B(-2,1)、C(4,5),求此梯形中位线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数fM(x)的定义域为R,且定义如下:fM(x)=
1,x∈M
0,x∉M
(其中M为非空数集且M?R),若A,B是实数集R的两个非空真子集且满足A∩B≠∅,则函数F(x)=
fA∪B(x)+fA∩B(x)
fA(x)+fB(x)+1
的值域为(  )
A、{0,
1
2
}
B、{0,1}
C、{0,
2
3
,1}
D、{0,
1
2
2
3
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
lnx
,g(x)=f(x)-mx(m∈R),
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)若函数g(x)在(1,+∞)上单调递减,求实数m的取值范围;
(Ⅲ)若存在x1,x2∈[e,e2],使m≥g(x1)-g′(x2)成立,求实数m的最小值.

查看答案和解析>>

同步练习册答案