精英家教网 > 高中数学 > 题目详情
11.不等式|$\frac{2x}{1-x}$|≥$\frac{2x}{1-x}$的解集为{x|x≤0 或x>1}.

分析 不等式等价于 $\frac{2x}{1-x}$≤0,即 $\frac{2x}{x-1}$≥0,即$\left\{\begin{array}{l}{x-1≠0}\\{2x(x-1)≥0}\end{array}\right.$,由此求得x的范围.

解答 解:不等式|$\frac{2x}{1-x}$|≥$\frac{2x}{1-x}$,等价于 $\frac{2x}{1-x}$≤0,即 $\frac{2x}{x-1}$≥0,即$\left\{\begin{array}{l}{x-1≠0}\\{2x(x-1)≥0}\end{array}\right.$,求得x≤0 或x>1,
故答案为:{x|x≤0 或x>1}.

点评 本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数y=x+$\frac{a}{x}$(a>0)在区间(0,2)上单调递减,则a∈[4,+∞).

查看答案和解析>>

科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(文)试卷(解析版) 题型:解答题

设函数

(1)当时,函数的图象有三个不同的交点,求实数的范围;

(2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求$\underset{lim}{n→∞}$($\frac{1}{1•3}$+$\frac{1}{3•5}$+…+$\frac{1}{(2n-1)(2n+1)}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=x-$\frac{1}{x}$,x∈[-1,0)∪(0,1]值域为R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\sqrt{1-{x}^{2}}$,g(x)=x+2,若方程f(x+a)=g(x)有两个不同实根,则实数a的取值范围为($2-\sqrt{2},1$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数y=x2-2ax-2在[-a,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x+1)=x2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(理)试卷(解析版) 题型:选择题

命题“”的否定是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案