精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的导函数f'(x)满足2f(x)+xf′(x)>x2(x∈R),则对x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

【答案】A
【解析】解:构造函数F(x)=x2f(x),
则F'(x)=2xf(x)+x2f'(x)=x(2f(x)+xf'(x)),
当x>0时,F'(x)>x3>0,F(x)递增;
当x<0时,F'(x)<x3<0,F(x)递减,
所以F(x)=x2f(x)在x=0时取最小值,
从而F(x)=x2f(x)≥F(0)=0,
故选A.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分别为线段AB,BC上的点,且CD=DE= ,CE=2EB=2

(1)证明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥的底面是梯形,且, 平面中点,

)求证: 平面

)若,求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(2)设n∈N* , 证明: + +…+ <ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )﹣ cos(2x+ ).
(1)数的单调增区间;
(2)若f(α)= ,α∈(0, ),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ: + =1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点:

(1)求椭圆Г的方程:
(2)设点A在椭圆Г上,点B在直线y=2上,且OA⊥OB,求证: + 为定值:
(3)设点C在Γ上运动,OC⊥OD,且点O到直线CD距离为常数d(0<d<2),求动点D的轨迹方程:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.

(1)求证:EF⊥平面PAC;
(2)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017山西孝义考前热身】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

同步练习册答案