精英家教网 > 高中数学 > 题目详情
16.已知等比数列{an}中,a1=2,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项sn

分析 (1)等比数列{an}中,a1=2,a3+2是a2和a4的等差中项,有等比数列的首项和公比分别表示出已知条件,解方程组即可求得首项和公比,代入等比数列的通项公式即可求得结果;
(2)把(1)中求得的结果代入bn=nan,求出bn,利用错位相减法求出Tn

解答 解:(1)设数列{an}的公比为q,
由题意知:2(a3+2)=a2+a4
∴q3-2q2+q-2=0,即(q-2)(q2+1)=0.
∴q=2,即an=2•2n-1=2n
(2)bn=n•2n
∴Sn=1•2+2•22+3•23+…+n•2n.①
2Sn=1•22+2•23+3•24+…+(n-1)•2n+n•2n+1.②
①-②得-Sn=21+22+23+24+…+2n-n•2n+1
=-2-(n-1)•2n+1
∴Sn=2+(n-1)•2n+1

点评 考查等比数列求通项公式和等差、等比中项的概念及错位相减法求数列的前项和Sn,等差数列和等比数列之间的相互转化,考查运算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A.8B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ x-3≤0\end{array}\right.$则z=x+2y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.实数x,y满足(x-y)2+y2=2,则x2+y2的最小值是3-$\sqrt{5}$,最大值是3+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.曲线f(x)=x2-3x+2lnx在x=1处的切线方程为x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知区域E={(x,y)|0≤x≤3,0≤y≤2},F={(x,y)|0≤x≤3,0≤y≤2,x≥y},若向区域E内随机投掷一点,则该点落入区域F内的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将号码分别为1、2、3、4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,号码为a,放回后,乙从此袋再摸出一个球,其号码为b,则使不等式a>2b-2成立的事件发生的概率等于(  )
A.$\frac{3}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,an+1-an=3n+2n+1求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆C:$\frac{x^2}{25}+\frac{y^2}{b^2}=1({0<b<5})$的长轴长、短轴长、焦距成等差数列,则该椭圆的方程是(  )
A.$\frac{x^2}{25}+\frac{y^2}{4}=1$B.$\frac{x^2}{25}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{25}+{y^2}=1$

查看答案和解析>>

同步练习册答案