精英家教网 > 高中数学 > 题目详情
12.从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选3个,能组成多少个无重复数字的五位数?

分析 根据分类计数原理,因为0不能排在首位,所以要以选0和不选0分为两类,再按其他要求排列.

解答 解:从5个奇数中选出2个,再从2、4、6、8四个偶数中选出3个,排成五位数,有C52•C43•A55=4800(个).
从5个奇数中选出2个,再从2,4,6,8四个偶数中再选出2个,将选出的4个数再选一个做万位数.余下的3个数加上0排在后4个数位上,
有C52•C42•C41•A44=10×6×4×24=5760(个).
由分类加法计数原理可知这样的五位数共有C52•C43•C52+A55•C42•C41•A44=10 560(个).

点评 本题主要考查了分类计数原理,分清特殊元素是分类的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.化简:cos$\frac{π}{5}$•cos$\frac{2π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若从4名数学教师中任意选出2人,分配到4个班级任教,每人任教2个班级,则不同的任课方案有36种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a、b、c∈R,a>b,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.a2>b2C.$\frac{a}{b}$>1D.a(c2+1)>b(c2+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于定义在R上的奇函数f(x),满足f(-x)+f(3+x)=0,若f(-1)=1,则f(1)+f(2)+f(3)+…+f(2015)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式|4x-1|>4的解集是(  )
A.$\{x|x<-\frac{3}{4}$或$x>\frac{5}{4}\}$B.$\{x|-\frac{3}{4}<x<\frac{5}{4}\}$C.$\{x|x<-\frac{3}{4}\}$D.$\{x|x>\frac{5}{4}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=|2x-3|,若0<2a≤b+1,且f(2a)=f(b+3),则M=3a2+2b+1的取值范围为$\frac{3}{16}$≤M<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知幂函数y=(a2+a-1)xa+1为R的偶函数,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.根据下列给出的条件能得出△ABC为钝角三角形有(  )
①sinA+cosA=$\frac{1}{4}$;             ②$\overrightarrow{AC}•\overrightarrow{CB}$=-$\frac{1}{3}$;
③sin2A+sin2B>sin2C;         ④AB=3,AC=2,sinB=$\frac{1}{3}$.
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案