精英家教网 > 高中数学 > 题目详情
16.已知钝角△ABC的面积为2$\sqrt{3}$,AB=2,BC=4,则该三角形的外接圆半径为$\frac{2\sqrt{21}}{3}$.

分析 利用三角形的面积公式求出B的大小,然后判断三角形的形状,利用余弦定理求出第三边的长,通过正弦定理求出外接圆的半径即可.

解答 解:根据面积为2$\sqrt{3}$=$\frac{1}{2}$AB•BCsinB=4sinB,∴sinB=$\frac{\sqrt{3}}{2}$,∴B=60°.或B=120°.
当B=60°时,三角形是直角三角形;
当B=120°时,三角形的第三边为:$\sqrt{{2}^{2}+{4}^{2}-2×2×4×cos120°}$=2$\sqrt{7}$.
所以三角形的外接圆的半径为:$\frac{1}{2}$×$\frac{2\sqrt{7}}{sin120°}$=$\frac{2\sqrt{21}}{3}$.
故答案为:$\frac{2\sqrt{21}}{3}$.

点评 本题主要考查了余弦定理的应用,正弦定理的应用,三角形的面积公式的应用,考查计算能力转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上有一点A,它关于原点的对称点为B,点F为是双曲线的右焦点,且满足AF⊥BF,设∠ABF=α,α∈[$\frac{π}{12}$,$\frac{π}{6}$],则该双曲线离心率e的取值范围为[$\sqrt{2}$,$\sqrt{3}$+1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\frac{x}{{{x^2}+1}}+sinx+1$的最大值为M,最小值为m,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若无穷等差数列{an}的首项a1>0,公差d<0,{an}的前n项和为Sn,则(  )
A.Sn单调递减B.Sn单调递增C.Sn有最大值D.Sn有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=log4x与g(x)=22x的图象(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x=cosα,且$α∈[-\frac{π}{4},\frac{3π}{4}]$,则arcsinx的取值范围是$[-\frac{π}{4},\frac{π}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,坐标原点O(0,0)、点P(1,2),将向量$\overrightarrow{OP}$绕点O按逆时针方向旋转$\frac{5π}{6}$后得向量$\overrightarrow{OQ}$,则点Q的横坐标是-$\frac{\sqrt{3}}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)的图象与g(x)=2x的图象关于直线y=x对称,令h(x)=f(1-|x|),则关于函数h(x)有下列命题:
①h(x)的图象关于原点对称;    ②h(x)的图象关于y轴对称;
③h(x)的最大值为0;          ④h(x)在区间(-1,1)上单调递增.
其中正确命题的序号为②③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线x+y=5与直线x-y=1交点坐标是(  )
A.(1,2)B.(2,3)C.(3,2)D.(2,1)

查看答案和解析>>

同步练习册答案