精英家教网 > 高中数学 > 题目详情

【题目】某学校为了了解本校高一学生每周课外阅读时间(单位:小时)的情况,按10%的比例对该校高一600名学生进行抽样统计,将样本数据分为5组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10),并将所得数据绘制成如图所示的频率分布直方图:
(Ⅰ)求图中的x的值;
(Ⅱ)估计该校高一学生每周课外阅读的平均时间;
(Ⅲ)为了进一步提高本校高一学生对课外阅读的兴趣,学校准备选拔2名学生参加全市阅读知识竞赛,现决定先在第三组、第四组、第五组中用分层抽样的放法,共随机抽取6名学生,再从这6名学生中随机抽取2名学生代表学校参加全市竞赛,在此条件下,求第三组学生被抽取的人数X的数学期望.

【答案】解:(Ⅰ)根据频率和为1,列出方程 (0.150+0.200+x+0.050+0.025)×2=1,
解得x=0.075;
(Ⅱ)估计该校高一学生每周课外阅读的平均时间为
=1×0.3+3×0.4+5×0.15+7×0.1+9×0.05=3.40(小时);
(Ⅲ)由题意知从第三组、第四组、第五组中依次分别
抽取3名,2名和1名学生,因此X的可能取值为0、1、2;
则P(X=0)= =
P(X=1)= =
P(X=2)= =
所以X的分布列为:

X

0

1

2

P

数学期望为EX=0× +1× +2× =1
【解析】(Ⅰ)根据频率和为1,列出方程求出x的值;(Ⅱ)利用频率分布直方图计算平均数即可;(Ⅲ)利用分层抽样原理计算从第三组、第四组、第五组中依次抽取的人数, 得出X的可能取值,计算对应的概率,写出分布列,求出数学期望.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C经过原点O(0,0)且与直线y=2x﹣8相切于点P(4,0).

(1)求圆C的方程;

(2)已知直线l经过点(4, 5),且与圆C相交于MN两点,若|MN|=2,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数λ≥0,设各项均为正数的数列{an}的前n项和为Sn,满足:a1 = 1,

).

(1)若λ = 0,求数列{an}的通项公式;

(2)若对一切恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,过点A(0,-b)和B(a,0)的直线与坐标原点距离为.

(1)求椭圆的方程;

(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆相交于C、D两点,试判断是否存在k值,使以CD为直径的圆过定点E?若存在求出这个k值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线x2=1上有两点ABAB中点M(1,2),求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线Cy2=1(a>0)与直线lxy=1相交于两个不同的点AB.

(1)求双曲线C的离心率e的取值范围;

(2)设直线ly轴的交点为P,且,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示。

1)求第345组的频率;

2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第345组中用分层抽样的方法抽取6名学生进入第二轮面试,求第345组每组各抽取多少学生进入第二轮面试?

3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题13分)已知数列满足:,且.记

集合

)若,写出集合的所有元素;

)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数;

)求集合的元素个数的最大值.

查看答案和解析>>

同步练习册答案