精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为为椭圆上任意一点,当时,的面积为,且.

1)求椭圆的方程;

2)已知直线经点,与椭圆交于不同的两点,且,求直线的方程.

【答案】1;(2.

【解析】

1)由的面积为,再结合椭圆的定义和余弦定理可得,再由可求出的值;

1)由题意可知直线的斜率存在,设出直线方程,将直线与椭圆的方程联立方程组,化简消元,再用韦达定理,然后结合列方程可求出直线的斜率.

1)设,则

中,,即

由余弦定理得,即

代入计算得,∴

,∴,∴椭圆的方程为

2)由题意知直线l存在斜率,设直线l的方程为

将其代入整理可得

,得.

,则

又∵

化简得,解得,∵,∴

∴直线的方程为,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知长轴长为的椭圆C的左、右焦点分别为F1F2,且以F1F2为直径的圆与C恰有两个公共点.

1)求椭圆C的方程;

2)若经过点F2的直线lC交于MN两点,且MN关于原点O的对称点分别为PQ,求四边形MNPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,分别为的中点,的一个三等分点(靠近点).将沿折起,记折起后点,连接上的一点,且,连接

1)求证:平面

2)若,直线与平面所成的角为,当最大时,求,并计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,,二面角的大小均为,设三棱锥的外接球球心为,直线交平面于点,则三棱锥的内切球半径为_________________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形为平行四边形,,点在线段上,,点在线段

(1)证明:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新《水污染防治法》已由中华人民共和国第十二届全国人民代表大会常务委员会第二十八次会议于2017627日通过,自201811日起施行.201831日,某县某质检部门随机抽取了县域内100眼水井,检测其水质总体指标.

罗斯水质指数

02

24

46

68

810

水质状况

腐败污水

严重污染

污染

轻度污染

纯净

1)求所抽取的100眼水井水质总体指标值的样本平均数(同一组中的数据用该组区间的中点值作代表).

2)①由直方图可以认为,100眼水井水质总体指标值服从正态分布,利用该正态分布,求落在(5.215.99)内的概率;

②将频率视为概率,若某乡镇抽查5眼水井的水质,记这5眼水井水质总体指标值位于(610)内的井数为,求的分布列和数学期望.

附:①计算得所抽查的这100眼水井总体指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)证明:若,则对于任意,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,中点,点上且平面延长线上,,交,且.

1)证明:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是(

A.城乡居民储蓄存款年底余额逐年增长

B.农村居民的存款年底余额所占比重逐年上升

C.2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额

D.城镇居民存款年底余额所占的比重逐年下降

查看答案和解析>>

同步练习册答案