精英家教网 > 高中数学 > 题目详情

已知点是直线上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率关于的函数为,那么下列结论正确的是 (   )

      A.一一对应                B.函数无最小值,有最大值

   C.函数是增函数             D.函数有最小值,无最大值

 

【答案】

B

【解析】解:因为点是直线上任意一点,所以点P在直线上运动时,那么PA+PB的最小值可以求解得到。那就是点A关于直线的对称点(-2,1),与B点的连线,利用对称性得到为,所以椭圆的长轴有最小值,焦距为2,则说明离心率只有最大值,无最小值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A (1,0),P是曲线
x=2cosθ
y=1+cos2θ
(θ∈R)
上任一点,设P到直线l:y=-
1
2
的距离为d,则|PA|+d的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,点P(-
2
,1)在椭圆上,线段PF2与y轴的交点M满足
PM
+
F2M
=
0

(1)求椭圆C的方程.
(2)椭圆C上任一动点M(x0,y0)关于直线y=2x的对称点为M1(x1,y1),求3x1-4y1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)为曲线y=x+
1
x
上任一点,点A(0,4),则直线AP的斜率k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为
2
2
,又椭圆上任一点到两焦点的距离和为2
2
,过点M(0,-
1
3
)与x轴不垂直的直线l交椭圆于P、Q两点.
(1)求椭圆的方程;
(2)在y轴上是否存在定点N,使以PQ为直径的圆恒过这个点?若存在,求出N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年北京宣武区高三二模考试数学试题 题型:解答题

(本小题共14分)
已知椭圆的焦点是,,点在椭圆上且满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆的交点为.
(i)求使 的面积为的点的个数;
(ii)设为椭圆上任一点,为坐标原点,,求的值.

查看答案和解析>>

同步练习册答案