精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

【答案】 )(12详见解析.

【解析】解法一:1的图像上所有点的纵坐标伸长到原来的2倍横坐标不变得到的图像,再将的图像向右平移个单位长度后得到的图像,故从而函数图像的对称轴方程为

21

其中

依题意,在区间内有两个不同的解当且仅当,故m的取值范围是.

2因为是方程在区间内有两个不同的解,

所以.

时,

时,

所以

解法二:1同解法一.

21同解法一.

2因为是方程在区间内有两个不同的解,

所以.

时,

时,

所以

于是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三个不同的实根,则m的取值范围是(
A.
B.
C.
D.(0,2e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,设函数,设

(1)求的取值范围,并把表示为的函数

(2)若恒成立,求实数的取值范围;

(3)若存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为等差数列 的前 项和,其中 ,且

(1)求常数 的值,并写出 的通项公式;

(2)记 ,数列 的前 项和为 ,若对任意的 ,都有 ,求常数 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的顶点在原点 ,对称轴是 轴,且过点 .
(Ⅰ)求抛物线 的方程;
(Ⅱ)已知斜率为 的直线 轴于点 ,且与曲线 相切于点 ,点 在曲线 上,且直线 轴, 关于点 的对称点为 ,判断点 是否共线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点 为圆心的圆与直线 相切,过点 的直线 与圆 相交于 两点, 的中点, .
(1)求圆 的标准方程;
(2)求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与y轴交于O,A两点,圆C2过O,A两点,且直线C2O与圆C1相切;

(1)求圆C2的方程;

(2)若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在求出定点坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2002年国际数学家大会在北京召开,会标是以我国古代数学家赵爽的弦图为基础设计.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图)如果小正方形的边长为1,大正方形的边长为5,直角三角形中较小的锐角为,则 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C,半径为 ,且点P在图中阴影部分(包括边界)运动.若 ,其中 ,则 的取值范围是( )

A.[2,3+ ]
B.[2,3+ ]
C.[3- , 3+ ]
D.[3- , 3+ ]

查看答案和解析>>

同步练习册答案