精英家教网 > 高中数学 > 题目详情

【题目】共享单车进驻城市,绿色出行引领时尚.某市有统计数据显示,2017年该市共享单车用户年龄登记分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年龄分为“年轻人”(20岁至39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”,使用次数为5次或不足5次的称为“不常使用单车用户”.已知在“经常使用单车用户”中有是“年轻人”.

(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,补全下列列联表,并根据列联表的独立性检验,判断能有多大把握可以认为经常使用共享单车与年龄有关?

(2)将频率视为概率,若从该市市民中随机任取3人,设其中经常使用共享单车的“非年轻人”人数为随机变量,求的分布与期望.

(参考数据:独立性检验界值表,其中

【答案】(1) 有85%的把握可以认为经常使用共享单车与年龄有关;(2)见解析.

【解析】试题分析:1根据共享单车用户年龄等价分布表中数据,可补全下列列联表,利用公式可得 从而可得有85%的把握可以认为经常使用共享单车与年龄有关;(2的可能取值为根据独立事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望..

试题解析:(1)补全的列联表如下:

年轻人

非年轻人

合计

经常使用共享单车

100

20

120

不常使用共享单车

60

20

80

合计

160

40

200

于是

即有85%的把握可以认为经常使用共享单车与年龄有关.

(2)由(1)的列联表可知,经常使用共享单车的“非年轻人”占样本总数的频率为,即在抽取的用户中出现经常使用单车的“非年轻人”的概率为0.1,

的分布列为

0

1

2

3

0.729

0.243

0.027

0.001

的数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点 为圆上任意一点,线段上一点满足直线上一点满足.

1)当在圆周上运动时,求点的轨迹的方程;

(2)若直线与曲线交于两点,且以为直径的圆过原点求证:直线不可能相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为对南康区和于都县两区县某次联考成绩进行分析,随机抽查了两地一共10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据平均数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆Cy轴相切于点T(0,2),与x轴的正半轴交于两点 (在点的左侧),且.

(1)求圆C的方程;(2)过点任作一直线与圆O 相交于两点,连接,求证: 定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60 min的学生称为“书虫”,低于60 min的学生称为“懒虫”,

(1)求x的值并估计全校3 000名学生中“书虫”大概有多少名学生?(将频率视为概率)

(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“书虫”与性别有关:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,设函数f(g(x))有m个零点,函数g(f(x))有n个零点,则m+n等于(  )

A. 6 B. 10 C. 8 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

已知具有线性相关关系.

(Ⅰ)求关于的线性回归方程

(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?(保留一位小数)

参考数据及公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的一元二次方程,其中

(I)若随机选自集合随机选自集合,求方程有实根的概率;

)若随机选自区间随机选自区间,求方程有实根的概率。

查看答案和解析>>

同步练习册答案