精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是(
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z

【答案】A
【解析】解:f(x)=2( sinωx+ cosωx)=2sin(ωx+ ),
依题意知函数的周期为T= =π,
∴ω=2,
∴f(x)=2sin(2x+ ),
由2kπ+ ≤2x+ ≤2kπ+ ,得kπ+ ≤x≤kπ+ ,k∈Z,
∴f(x)的单调递减区间是[kπ+ ,kπ+ ](k∈Z),
故选A.
【考点精析】关于本题考查的两角和与差的正弦公式和正弦函数的单调性,需要了解两角和与差的正弦公式:;正弦函数的单调性:在上是增函数;在上是减函数才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)当x∈[﹣ ]时,求f(x)的最大值.
(Ⅱ)设△ABC的内角A,B,C所对的边分别为a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.

1求数列的通项公式;

2,记数列的前项和.若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点在坐标原点,焦点轴正半轴上,过点的直线交抛物线于两点线段的长是 的中点到轴的距离是.

(1)求抛物线的标准方程

2过点作斜率为的直线与抛物线交于两点直线交抛物线于

求证 轴为的角平分线

②若交抛物线于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列 期待数列

.

)分别写出一个单调递增的阶和期待数列”.

)若某期待数列是等差数列,求该数列的通项公式.

)记期待数列的前项和为,试证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,

∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PCBD的中点.

(1)证明:EF∥面PAD;

(2)证明:面PDC⊥面PAD;

(3)求四棱锥P—ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: =1a>b>0过点P(1, ).离心率为

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A,B两点.

①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.

t的最大值;

②若直线l的斜率为,试探究OA2+ OB2是否为定值,若是定值,则求出此

定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经销一批进价为每件30元的商品在市场试销中发现此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:

x

30

40

45

50

y

60

30

15

0

在所给的坐标图纸中,根据表中提供的数据,描出实数对(xy)的对应点,并确定yx的一个函数关系式;

(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列为等差数列,.

(1) 求数列的通项公式;

(2)求数列的前n项和.

查看答案和解析>>

同步练习册答案