【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是( )
A.[kπ+ ,kπ+ ],k∈z
B.[kπ﹣ ,kπ+ ],k∈z
C.[2kπ+ ,2kπ+ ],k∈z
D.[2kπ﹣ ,2kπ+ ],k∈z
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinxcosx+sin2x+ (x∈R).
(Ⅰ)当x∈[﹣ , ]时,求f(x)的最大值.
(Ⅱ)设△ABC的内角A,B,C所对的边分别为a,b,c,且c= ,f(C)=2,sinB=2sinA,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点在坐标原点,焦点在轴正半轴上,过点的直线交抛物线于两点,线段的长是, 的中点到轴的距离是.
(1)求抛物线的标准方程;
(2)过点作斜率为的直线与抛物线交于两点,直线交抛物线于,
①求证: 轴为的角平分线;
②若交抛物线于,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设满足以下两个条件的有穷数列, , , 为阶“期待数列”:
①;
②.
()分别写出一个单调递增的阶和阶“期待数列”.
()若某阶“期待数列”是等差数列,求该数列的通项公式.
()记阶“期待数列”的前项和为,试证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,
∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD;
(3)求四棱锥P—ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C: =1(a>b>0)过点P(1, ).离心率为.
(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A,B两点.
①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.
求t的最大值;
②若直线l的斜率为,试探究OA2+ OB2是否为定值,若是定值,则求出此
定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定y与x的一个函数关系式;
(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com