【题目】下列函数既是奇函数又在(﹣1,1)上是减函数的是( )
A. B.
C. y=x﹣1D. y=tanx
【答案】B
【解析】
对各选项逐一判断即可,
利用在上为增函数,在上为减函数,即可判断A选项不满足题意,
令,即可判断其在递增,结合复合函数的单调性判断法则即可判断B选项满足题意
对于C,D,由初等函数性质,直接判断其不满足题意.
解:根据题意,依次分析选项:
对于A,在上为增函数,在上为减函数,所以y(3x﹣3﹣x)在R上为增函数,不符合题意;
对于B,,所以是奇函数,
令,则由,两个函数复合而成
又,它在上单调递增
所以既是奇函数又在(﹣1,1)上是减函数,符合题意,
对于C,y=x﹣1是反比例函数,是奇函数,但它在(﹣1,1)上不是减函数,不符合题意;
对于D,y=tanx为正切函数,是奇函数,但在(﹣1,1)上是增函数,不符合题意;
故选:B.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x-1|+|x-2|.
(1)求不等式f(x)≥3的解集;
(2)若存在实数x满足f(x)≤-a2+a+7,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,则_____.
【答案】
【解析】
分子分母同时除以,把目标式转为的表达式,代入可求.
,则
故答案为:.
【点睛】
本题考查三角函数的化简求值,常用方法:(1)弦切互化法:主要利用公式, 形如等类型可进行弦化切;(2)“1”的灵活代换和的关系进行变形、转化.
【题型】填空题
【结束】
15
【题目】如图,正方体的棱长为1,为中点,连接,则异面直线和所成角的余弦值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有( )
A. 14个 B. 13个 C. 15个 D. 12个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C: =1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1 , 四边形ABCD的面积为S2 . (Ⅰ)当点B坐标为(﹣1,0)时,求k的值;
(Ⅱ)若S1= ,求线段AD的长;
(Ⅲ)求 的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学旅游局欲将一块长20百米,宽10百米的矩形空地ABCD建成三星级乡村旅游园区,园区内有一景观湖EFG(如图中阴影部分)以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy,O为园区正门,园区北门P在y正半轴上,且PO=10百米。景观湖的边界线符合函数的模型。
(1)若建设一条与AB平行的水平通道,将园区分成面积相等的两部分,其中湖上的部分建成玻璃栈道,求玻璃栈道的长度。
(2)若在景观湖边界线上一点M修建游船码头,使得码头M到正门O的距离最短,求此时M点的横坐标。
(3)设图中点B为仓库所在地,现欲在线段OB上确定一点Q建货物转运站,将货物从点B经Q点直线转运至点P(线路PQ不穿过景观湖),使货物转运距离QB+PQ最短,试确定点P的位置。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)如表所示是某市最近5年个人年平均收入表节选.求y关于x的回归直线方程,并估计第6年该市的个人年平均收入(保留三位有效数字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是从调查某行业个人平均收入与接受专业培训时间关系得到2×2列联表:
受培时间一年以上 | 受培时间不足一年 | 总计 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
总计 | 100 |
完成上表,并回答:能否在犯错概率不超过0.05的前提下认为“收入与接受培训时间有关系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com