精英家教网 > 高中数学 > 题目详情
(2012•烟台二模)设椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)
的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A、B两点,已知A(
1
3
4
3
).
(1)求椭圆E的方程;
(2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.
分析:(1)由A(
1
3
4
3
)和P(3,4)能求出直线PF1的方程为:y=x+1,令x=0,得椭圆E的焦点为F1(0,1)、F2(0,-1),由椭圆的定义能求出椭圆E的方程.
(2)设与直线PF1平行的直线l:y=x+m,由
y2
2
+x2=1
y=x+m
,得3x2+2mx+m2-2=0,再由根的判别式结合题设条件,能求出C点的坐标..
解答:解:(1)由A(
1
3
4
3
)和P(3,4)得直线PF1的方程为:y=x+1…(1分)
令x=0,得y=1,即c=1                                          …(2分)
椭圆E的焦点为F1(0,1)、F2(0,-1),
由椭圆的定义可知2a=|AF1|+|AF2|=
(
1
3
)
2
+(
4
3
-1)
2
+
(
1
3
)
2
+(
4
3
+1)
2
=2
2
…(4分)
a=
2
,b=1
…(5分)
椭圆E的方程为
y2
2
+x2=1
…(6分)
(2)设与直线PF1平行的直线l:y=x+m…(7分),
y2
2
+x2=1
y=x+m
,消去y得3x2+2mx+m2-2=0…(8分)
△=(2m)2-4×3×(m2-2)=0,
m2=3,m=±
3
…(9分)
要使点C到直线PF1的距离最远,
则直线L要在直线PF1的下方,所以m=-
3
…(10分)
此时直线l与椭圆E的切点坐标为(
3
3
,-
2
3
3
)

故C(
3
3
,-
2
3
3
)
为所求.   …(12分)
点评:本题考查椭圆方程的求法和求点的坐标,具体涉及到椭圆的定义、直线方程的求法、椭圆的简单性质、根的判别式、直线与椭圆的位置关系等基本知识,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•烟台二模)m=-1是直线mx+(2m-1)y+1=0和直线3x+my+3=0垂直的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台二模)如图,△PAD为等边三角形,ABCD为矩形,平面PAD⊥平面ABCD,AB=2,E、F、G分别为PA、BC、PD中点,AD=2
2

(Ⅰ)求证:AG⊥EF
(Ⅱ)求多面体P-AGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台二模)若|
a
|=1
|
b
|=2
,且
a
+
b
a
垂直,则向量
a
b
的夹角大小为
2
3
π
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台二模)△ABC的三个内角A,B,C所对的边分别为a,b,c,向量
m
=(-1,1)
n
=(cosBcosC,sinBsinC-
3
2
)
,且
m
n

(Ⅰ)求A的大小;
(Ⅱ) a=1,B=45°,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台二模)设向量
a
=(a1,a2),
b
=(b2,b2),定义一种向量
a
?
b
=(a1,a2)?(b1,b2)=(a1b2,a2b2).已知
m
=(2,
1
2
),
n
=(
π
3
,0)
,点,(x,y)在y=sin x的图象上运动,点Q在y=f(x)的图象上运动且满足
OQ
=
m
?
OP
+
n
(其中O为坐标原点),则y=f(x)的最大值为(  )

查看答案和解析>>

同步练习册答案