精英家教网 > 高中数学 > 题目详情
PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,那么直线PC与平面PAB所成角的余弦值是(  )
分析:过PC上任意一点D作DO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.先证明点O在∠APB的平分线上,通过解直角三角形PED、DOP,求出直线PC与平面PAB所成角的余弦值.
解答:解:在PC上任取一点D并作DO⊥平面APB,则∠DPO就是直线PC与平面PAB所成的角.         
过点O作OE⊥PA,OF⊥PB,因为DO⊥平面APB,则DE⊥PA,DF⊥PB.
△DEP≌△DFP,∴EP=FP,∴△OEP≌△OFP,
因为∠APC=∠BPC=60°,所以点O在∠APB的平分线上,即∠OPE=30°.
设PE=1,∵∠OPE=30°∴OP=
1
cos30°
=
2
3
3

在直角△PED中,∠DPE=60°,PE=1,则PD=2.
在直角△DOP中,OP=
2
3
3
,PD=2.则cos∠DPO=
OP
PD
=
3
3

即直线PC与平面PAB所成角的余弦值是
3
3

故选C.
点评:本题考查了直线与平面所成角的大小计算.解题过程构造了解题必需的直角三角形.考查空间想象能力,计算能力、转化能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

PA,PB,PC是从点P引出的三条射线,每两条的夹角均为60°,则直线PC与平面PAB所成角的余弦值为(  )
A、
1
2
B、
6
3
C、
3
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,则直线PC与平面PAB所成角的余弦值是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

PAPBPC是从P引出的三条射线,每两条的夹角都是,则直线PC与平面PAB所成角的余弦值为(  )

A.                     B.                  C.                  D.

查看答案和解析>>

科目:高中数学 来源:新课标高三数学空间向量及其运算、角的概念及其求法和空间距离专项训练(河北) 题型:填空题

PA,PB,PC是从P点引出的三条射线,他们之间每两条的夹角都是60°,则直线PC与平面PAB所成的角的余弦值为_______________

 

查看答案和解析>>

同步练习册答案