精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,A(1,0),函数y=ex的图象与y轴的交点为B,P为函数y=ex图象上的任意一点,则数学公式的最小值________.

1
分析:由题意可得向量的坐标,进而可得=-x0+,构造函数g(x)=-x+ex,通过求导数可得其极值,进而可得函数的最小值,进而可得答案.
解答:由题意可知A(1,0),B(0,1),
=(0,1)-(1,0)=(-1,1),
设P(x0),所以=(x0),
=-x0+
构造函数g(x)=-x+ex,则g′(x)=-1+ex
令其等于0可得x=0,且当x<0时,g′(x)<0,
当x>0时,g′(x)>0,
故函数g(x)在x=0处取到极小值,
故gmin(x)=g(0)=1,
的最小值为:1
故答案为:1
点评:本题考查平面向量数量积的运算,涉及导数法求函数的最值,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案