精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数.

(1)求常数的值;

(2),证明函数(1,+∞)上是减函数;

(3)若函数,且在区间[3,4]上没有零点,求实数的取值范围.

【答案】(1);(2)m>m<.

【解析】试题分析:(1)由于为奇函数,可得,即可得出;(2)利用对数函数的单调性和不等式的性质通过作差即可得出;(3利用2)函数的单调性、指数函数的单调性即可得出.

试题解析:∵f(x)为奇函数

f(x)=-f(x),即=-

,即1k2x21x2,整理得k21.

k=-1(k1使f(x)无意义而舍去)

(2)证明:由(1)得,k=-1h(x),任取x1x2(1,+∞),且x1<x2

h(x2)h(x1).

x1x2(1,+∞),且x1<x2

x1x2<0x11>0x21>0

h(x2)h(x1)

h(x1)>h(x2)

∴函数yh(x)(1,+∞)是减函数.

(3)解:由(2)知,f(x)(1,+∞)上递增,

g(x)f(x)—m[3,4]递增.

g(x)在区间[3,4]上没有零点.

g(3)mm>0g(4)m m<0

m>m<.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC内角A,B,C所对的边分别为a,b,c,且
(1)若 ,求△ABC的面积;
(2)若 ,且c>b,BC边的中点为D,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知qn均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn1,xi∈M,i=1,2,…,n}.

(1)q=2,n=3时,用列举法表示集合A.

(2)s,t∈A,s=a1+a2q+…+anqn1,t=b1+b2q+…+bnqn1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面三个类比结论:
①向量 ,有| |2= 2;类比复数z,有|z|2=z2
②实数a,b有(a+b)2=a2+2ab+b2;类比向量 ,有( 2= 2 2
③实数a,b有a2+b2=0,则a=b=0;类比复数z1 , z2 , 有z12+z22=0,则z1=z2=0
其中类比结论正确的命题个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查喜欢旅游是否与性别有关,调查人员就“是否喜欢旅游”这个问题,在火车站分别随机调研了50名女性和50名男性,根据调研结果得到如图所示的等高条形图
(Ⅰ)完成下列2×2列联表:

喜欢旅游

不喜欢旅游

合计

女性

男性

合计

(II)能否在犯错率不超过0.025的前提下认为“喜欢旅游与性别有关”
附:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图像如图所示.

(1)求函数的解析式;

(2)当时,求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线l与抛物线交于P,Q两点,弦PQ的中点为N,经过点N作y轴的垂线与C的准线交于点T.

(Ⅰ)若直线l的斜率为1,且|PQ|=4,求抛物线C的标准方程;
(Ⅱ)证明:无论p为何值,以线段TN为直径的圆总经过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)设函数求函数在区间上的值域

2)定义表示中较小者设函数 .

①求函数的单调区间及最值

②若关于的方程有两个不同的实根求实数的取值范围.

查看答案和解析>>

同步练习册答案