精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,经过点 且斜率为k的直线l与椭圆 有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量 共线?如果存在,求k值;如果不存在,请说明理由.

【答案】解:(Ⅰ)由已知条件,直线l的方程为
代入椭圆方程得
整理得
直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=
解得 .即k的取值范围为
(Ⅱ)设P(x1 , y1),Q(x2 , y2),则
由方程①, . ②
. ③

所以 共线等价于
将②③代入上式,解得
由(Ⅰ)知
故没有符合题意的常数k
【解析】(1)直线l与椭圆有两个不同的交点,即方程组有2个不同解,转化为判别式大于0.(2)利用2个向量共线时,坐标之间的关系,由一元二次方程根与系数的关系求两根之和,解方程求常数k.
【考点精析】关于本题考查的向量的共线定理和平面的概念、画法及表示,需要了解设,其中,则当且仅当时,向量共线;经过不在同一条直线上的三点确定一个面;平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P(4,2)是直线l被椭圆 所截得的线段的中点,
(1)求直线l的方程
(2)求直线l被椭圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,p,q均为正数,且 ,则(
A.m>p>q
B.p>m>q
C.m>q>p
D.p>q>m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C: ,过点的动直线l与C相交于两点,抛物线C在点A和点B处的切线相交于点Q.

(Ⅰ)写出抛物线的焦点坐标和准线方程;

(Ⅱ)求证:点Q在直线上;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣4x+a+3,g(x)=mx+5﹣2m
(1)当a=﹣3,m=0时,求方程f(x)﹣g(x)=0的解;
(2)若方程f(x)=0在[﹣1,1]上有实数根,求实数a的取值范围;
(3)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|a﹣1≤x≤a+1},集合B={x|﹣1≤x≤5}.
(1)若a=5,求A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班学生进行了三次数学测试,第一次有8名学生得满分,第二次有10名学生得满分,第三次有12名学生得满分,已知前两次均为满分的学生有5名,三次测试中至少又一次得满分的学生有15名.若后两次均为满分的学生至多有名,则的值为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司研发出一款新产品,批量生产前先同时在甲、乙两城市销售30天进行市场调查.调查结果发现:甲城市的日销售量与天数的对应关系服从图所示的函数关系;乙城市的日销售量与天数的对应关系服从图所示的函数关系;每件产品的销售利润与天数的对应关系服从图所示的函数关系,图是抛物线的一部分.

)设该产品的销售时间为,日销售量利润为,求的解析式;

)若在的销售中,日销售利润至少有一天超过万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.

查看答案和解析>>

同步练习册答案