精英家教网 > 高中数学 > 题目详情

(1)已知f(x)=x2-1,g(x)=数学公式,求f[g(x)]和g[f(x)]的表达式.
(2)已知函数f(x)的定义域为(0,+∞),且f(x)=2f(数学公式数学公式-1,求f(x)的表达式.

解:(1)当x>0时,g(x)=x-1,
故f[g(x)]=(x-1)2-1=x2-2x;
当x<0时,g(x)=2-x,
故f[g(x)]=(2-x)2-1=x2-4x+3;
∴f[g(x)]=
当x>1或x<-1时,f(x)>0,
故g[f(x)]=f(x)-1=x2-2;
当-1<x<1时,f(x)<0,
故g[f(x)]=2-f(x)=3-x2
∴g[f(x)]=
(2)由题意知f(x)=2f(-1,用代替x,得f()=2f(x)-1,
将f()=-1代入f(x)=2f(-1中,
即f(x)=2×(-1)-1,
求得f(x)=+
分析:(1)因g(x)分段函数,故分x>0和x<0两种情况,把对应g(x)代入f(x)求f[g(x)];当求g[f(x)]时分f(x)>0和f(x)<0两种情况,并求出对应的x的范围,再把f(x)代入g(x),最后都用分段函数表示.
(2)由方程的特点令x=,代入已知的方程得到另外一个关于f(x)和f()的方程,再把f()原来的方程求出f(x).
点评:本题考查了求函数的解析式的方法,分别用了代入法和列方程法,对于分段函数要根据自变量的范围代入对应的关系式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的定义域为x∈R且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,那么,当x>1时,f(x)的递减区间是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);
(2)已知f(x)满足2f(x)+f(
1x
)=3x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知f(x)+2f(
1
x
)=3x
,则函数g(x)=f(2x)在(0,1)上有唯一零点;
②对于函数f(x)=x
1
2
的定义域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2

③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),则必有0<f(b)<1;
④已知f(x)、g(x)是定义在R上的两个函数,对任意x、y∈R满足关系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0时f(x)•g(x)≠0.则函数f(x)、g(x)都是奇函数.
其中正确命题的序号是
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)满足下面两个条件,求a的取值范围.
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=2+log4x(1≤x≤16),求函数g(x)=[f(x)]2+f(x2)的值域.
(2)若直线y=4a与y=|ax-2|(a>0且a≠1)的图象有两个公共点,求a的取值范围.

查看答案和解析>>

同步练习册答案