精英家教网 > 高中数学 > 题目详情

【题目】设△ABC的内角A,B,C的对边分别为a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面积.

【答案】
(1)∵C= ,sinB=2sinA,

∴由正弦定理可得:b=2a,

∵c=2

∴由余弦定理可得:c2=a2+b2﹣2abcosC,即:12=a2+4a2﹣2a2

∴解得:a=2,b=4


(2)∵cosC=

∴sinC= =

又∵b=2a,

∴由余弦定理可得:c2=a2+b2﹣2abcosC=a2+4a2﹣a2=4a2,解得:c=2a,

∵c=2 ,可得:a= ,b=2

∴SABC= absinC= =


【解析】(1)由已知及正弦定理可得b=2a,利用余弦定理可求a的值,进而可求b;(2)由已知利用同角三角函数基本关系式可求sinC,又b=2a,利用余弦定理可解得c=2a,从而可求a,b,利用三角形面积公式即可计算得解.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过双曲线 (a>0,b>0)的右焦点F2(c,0)作圆x2+y2=a2的切线,切点为M,延长F2M交抛物线y2=﹣4cx于点P,其中O为坐标原点,若 ,则双曲线的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex+ax2有两个零点 (Ⅰ)当a=1时,求f(x)的最小值;
(Ⅱ)求a的取值范围;
(Ⅲ)设x1 , x2是f(x)的两个零点,证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 且 是1与an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{ }的前n项和,证明: <Tn<1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={3a,3},B={a2+2a,4},A∩B={3},则A∪B等于(
A.{3,5}
B.{3,4}
C.{﹣9,3}
D.{﹣9,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程选讲]

已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为 ,曲线C1、C2相交于A、B两点.
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)曲线C1与直线 (t为参数)分别相交于M,N两点,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府在该地一水库上建造一座水电站,用泄流水量发电,如图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120],历年中日泄流量在区间[30,60)的年平均天数为156天,一年按364天计.
(1)请把频率直方图补充完整;
(2)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才能够运行一台发电机,如60≤X<90时才够运行两台发电机,若运行一台发电机,每天可获利润4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据.问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一般情况下,城市主干道上的车流速度 (单位:千米/小时)是车流密度 (单位:辆/千米)的函数。当主干道上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时。研究表明:当 时,车流速度 是车流密度 的一次函数。
(1)当 时,求函数 的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过主干道上某观测点的车辆数,单位:辆/小时) 可以达到最大?并求出最大值。(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣k(x﹣1)
(1)求f(x)的单调区间;并证明lnx+ ≥2(e为自然对数的底数)恒成立;
(2)若函数f(x)的一个零点为x1(x1>1),f'(x)的一个零点为x0 , 是否存在实数k,使 =k,若存在,求出所有满足条件的k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案