精英家教网 > 高中数学 > 题目详情
.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
(Ⅰ)连BD,设AC交BD于O,由题意SO⊥AC。
在正方形ABCD中,AC⊥BD,所以AC⊥平面SBD,
得AC⊥SD。
(Ⅱ)设正方形边长a,则SD=

又OD=,所以SOD=60°,
连OP,由(Ⅰ)知AC⊥平面SBD,所以AC⊥OP,且AC⊥OD,所以POD是二面角P-AC-D的平面角。由SD⊥平面PAC,知SD⊥OP,所以POD=30°,
即二面角P-AC-D的大小为30°。
(Ⅲ)在棱SC上存在一点E,使BE//平面PAC
由(Ⅱ)可得PD=,故可在SP上取一点N,使PN=PD,过N作PC的平行线与SC的交点即为E。连BN。在△BDN中知BN//PO,又由于NE//PC,故平面BEN//平面PAC,得BE//平面PAC,由于SN:NP=2:1,故SE:EC=2:1。

解法二:
(1)连BD,设AC交于BD于O,由题意知SO⊥平面ABCD,
以O为坐标原点,分别为x轴、y轴、z轴正方向,
建立坐标系O-xyz如图。设底面边长为a,则

(2)由题意知面PAC的一个法向量为

(3)在棱SC上存在一点E使BE//面PAC
由(2)知为面PAC的一个法向量,且设E(x,y,z)

M是BC的中点,AM=1,点P在AM上且满足
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,
求证:平面A B1D1∥平面EFG;
(2) 求证:平面AA1C⊥面EFG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,为圆柱的母线,是底面圆的直径,分别是的中点,DE⊥面CBB1.
(Ⅰ)证明:DE //面ABC
(Ⅱ)求四棱锥与圆柱的体积比;
(Ⅲ)若,求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三条直线两两平行,则可以确定平面的个数是
、1       、3         、1或3         、不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中,正确的有(    )
①若aα,则a∥平面α                    ②a∥平面α,bα则a∥b
③平面α∥平面β,aα,bβ则a∥b ④平面α∥平面β,点P∈α,a∥β且P∈a则aα
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD中,AD=BC=2,E、F分别是CD、AB的中点,若
EF=,则AD、BC所成的角等于

(第7题图)

 

A、        B、     C、     D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线,给出下列命题:
①若,则;     ②若
③若;      ④若
⑤若
其中正确命题的序号是_______________(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,点分别在线段上,且 .以下结论:①;②MN//平面;③MN与异面;④点到面的距离为;⑤若点分别为线段的中点,则由线确定的平面在正方体上的截面为等边三角形.其中有可能成立的结论为____________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.在正四面体ABCD中,EF分别是BCAD中点,则异面直线AECF所成角的余弦值是________.

查看答案和解析>>

同步练习册答案