精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=ex+ax
(1)当a=1时,求曲线y=f(x)在点(0,1)处的切线方程;
(2)若函数f(x)在区间[1,+∞)上的最小值为0,求a的值;
(3)若对于任意x≥0,f(x)≥e-x恒成立,求a的取值范围.

分析 (1)由求导公式求出f′(x),由导数的几何意义求出切线的斜率k=f′(0),利用点斜式方程求出切线的方程;
(2)对a进行分类讨论,当a≥0时f(x)=ex+ax>0,不符合题意,当a<0时,求出f′(x)以及函数的单调区间,再对临界点与1的关系进行分类讨论,分别求出f(x)的最小值,结合条件求出a的值;
(3)根据不等式构造函数g(x)=ex+ax-e-x,求出g′(x)后由基本不等式对a分类讨论,分别求出g(x)的单调区间和最小值,结合恒成立列出不等式,求出a的取值范围.

解答 解:(1)当a=1时,f(x)=ex+x的导数为f′(x)=ex+1,
即有y=f(x)在点(0,1)处的切线斜率为k=1+1=2,
则y=f(x)在点(0,1)处的切线方程为y=2x+1;
(2)f(x)=ex+ax的导数为f′(x)=ex+a,
若a≥0,则f(x)在R上递增,
即有f(x)在区间[1,+∞)上的最小值为f(1)=e+a=0,
解得a=-e<0,不成立;
若a<0,则x>ln(-a)时,f′(x)>0,f(x)递增;
x<ln(-a)时,f′(x)<0,f(x)递减.
当ln(-a)≤1,即-e≤a<0时,f(x)在[1,+∞)递增,
即有f(1)取得最小值,且为e+a=0,解得a=-e;
当ln(-a)>1,即a<-e时,即有f(ln(-a))取得最小值,
且为-a+aln(-a)=0,解得a=-e,不成立.
综上可得a的值为-e;
(3)对于任意x≥0,f(x)≥e-x恒成立,
即为ex-e-x+ax≥0,在x≥0恒成立.
令g(x)=ex-e-x+ax,g′(x)=ex+e-x+a,
由ex+e-x≥2$\sqrt{{e}^{x}•{e}^{-x}}$=2,当且仅当x=0时取得等号.
①当a≥-2时,由ex+e-x≥2,
可得g′(x)≥0,(且a=-2时,仅当x=0时g′(x)=0)
所以g(x)在R上单调递增.
又g(0)=0,所以,当a≥-2时,对于任意x≥0都有g(x)≥0.
②当a<-2时,由g′(x)=ex+e-x+a<0,得(ex2+aex+1<0,
得$\frac{-a-\sqrt{{a}^{2}-4}}{2}$<ex<$\frac{-a+\sqrt{{a}^{2}-4}}{2}$,
其中0<$\frac{-a-\sqrt{{a}^{2}-4}}{2}$<1,且$\frac{-a+\sqrt{{a}^{2}-4}}{2}$>1,
所以ln$\frac{-a-\sqrt{{a}^{2}-4}}{2}$<0,且ln$\frac{-a+\sqrt{{a}^{2}-4}}{2}$>0,
所以g(x)在(0,ln$\frac{-a+\sqrt{{a}^{2}-4}}{2}$)上单调递减.
又g(0)=0,所以存在x0∈(0,ln$\frac{-a+\sqrt{{a}^{2}-4}}{2}$),使g(x0)<0,不符合题意.
综上可得,a的取值范围为[-2,+∞).

点评 本题考查导数的几何意义以及切线方程,利用导数研究函数的单调性、最值,恒成立问题的转化,以及分类讨论和转化思想,构造函数法,考查化简、变形能力,综合性强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.有3名男生,2名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边的位置,共72种排法;
(2)全体排成一行,其中男生必须排在一起,共36种排法;
(3)全体排成一行,男生不能排在一起,共12种排法;
(4)全体排成一行,其中甲、乙、丙三人从左到右的顺序不变,共20种排法;
(5)全体排成一行,其中甲不再最左边,乙不在最右边,共78种排法;
(6)若再加入一名女生,全体排成一行,男女各不相邻,共144种排法;
(7)排成前后两排,前排3人,后排2人,共120种排法;
(8)全体排成一行,甲、乙两人中间必须有1人,共36种排法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=x,$\overrightarrow{AC}$•$\overrightarrow{BC}$=-1,O为△ABC所在平面内的一点,2$\overrightarrow{BO}$=(1-λ)$\overrightarrow{BC}$-2λ$\overrightarrow{AB}$(0≤λ≤1).
(1)指出点O所在的位置,并给予证明;
(2)设f(λ)=$\overrightarrow{OA}$•($\overrightarrow{OB}$+$\overrightarrow{OC}$),求函数f(λ)的最小值g(x),并求出相应的λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆x2+y2-2x-4y+m=0与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{4}{\sqrt{5}}$,试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.己知,集合A={-3,-1,3,1},集合B={-2,-1,0,1,2},则A∪B(  )
A.{-3,-2,-1,1,2,3}B.M={-1,1}
C.M={0}D.M={-3,-2,-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆的方程为x2+y2-2ax-b2=0,则过点P(a,b)的直线与圆有1或2个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知:f(x)=2$\sqrt{3}$cos2x+2sinxcosx-$\sqrt{3}$.
求:(1)f(x)的最小正周期;
(2)f(x)的单调递增区间;
(3)若f($\frac{α}{2}$-$\frac{π}{6}$)-f($\frac{α}{2}$+$\frac{π}{12}$)=$\sqrt{6}$,且α∈($\frac{π}{2}$,π),求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x2=2y离点A(0,a)(a>0)最近的点恰好是顶点,这个结论成立的充要条件是(  )
A.a>0B.a≥1C.0<a≤$\frac{1}{2}$D.0<a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,点M的坐标为$({\sqrt{3},1})$,点N的坐标为(cosωx,sinωx),其中ω>0,设$f(x)=\overrightarrow{OM}•\overrightarrow{ON}$(O为坐标原点).
(Ⅰ)若ω=2,∠A为△ABC的内角,当f(A)=1时,求∠A的大小;
(Ⅱ)记函数y=f(x)(x∈R)的值域为集合G,不等式x2-mx<0的解集为集合P.当P⊆G时,求实数m的最大值.

查看答案和解析>>

同步练习册答案