精英家教网 > 高中数学 > 题目详情
18.如图,直三棱柱ABC-A1B1C1中,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=2CC1,则BD1与AF1所成的角是(  )
A.30°B.45°C.60°D.90°

分析 取BC的中点D,连接D1F1,F1D,AD,由D1B∥D1F,知∠DF1A就是BD1与AF1所成角,由此能求出BD1与AF1所成的角.

解答 解:取BC的中点D,连接D1F1,F1D,AD,∴D1B∥DF1
∴∠DF1A就是BD1与AF1所成角
设BC=CA=2CC1=2,
∵直三棱柱ABC-A1B1C1中,∠BCA=90°,
点D1,F1分别是A1B1,A1C1的中点,
∴AD=$\sqrt{4+1}$=$\sqrt{5}$,AF1=$\sqrt{1+1}$=$\sqrt{2}$,
DF1=BD1=$\sqrt{1+(\frac{\sqrt{4+4}}{2})^{2}}$=$\sqrt{3}$,
在△DF1A中,cos∠DF1A=$\frac{3+2-5}{2×\sqrt{2}×\sqrt{3}}$=0.
∴∠DF1A=90°.
故选:D.

点评 本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列幂函数中过点(0,0),(1,1)的偶函数是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数在区间(-∞,0)上是增函数的是(  )
A.y=-$\frac{1}{x}$B.y=2x2-x-1C.y=|x|D.y=-2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足条件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,则数列{an}的通项公式为(  )
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2-x+2,
(1)当a=1时,当x∈[1,+∞)时,求函数$\frac{f(x)}{x}$的最小值;
(2)解关于x的不等式f(x)-2ax≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.P为双曲线$\frac{x^2}{4}-\frac{y^2}{9}=1$右支上一点,F1,F2分别为双曲线的左右焦点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直线PF2交y轴于点A,则△AF1P的内切圆半径为(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)定义在实数集R上,满足f(1+x)=f(1-x),当x≥1时,f(x)=2x,则下列结论正确的是(  )
A.f($\frac{1}{3}$)<f(2)<f($\frac{1}{2}$)B.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)C.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)D.f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(-1,0).
(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数$y=\frac{1}{2}{x^2}+\frac{1}{2}$的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案