精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0(e是自然对数的底数),对任意的m∈[﹣2,4]恒成立,则整数k的最小值是(
A.2
B.3
C.4
D.5

【答案】C
【解析】解:∵f(﹣x)= = =﹣ =﹣f(x), ∴函数f(x)是奇函数,
函数f(x)= .定义域为R,函数f(x)在R上是增函数.
证明:设x1 , x2是R内任意两个值,且x1<x2
= ①.
又因为x1<x2 , 所以 ,又
所以①<0,即f(x1)﹣f(x2)<0,即f(x1)<f(x2).
故f(x)是R上的增函数.
则不等式若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0等价为若不等式f(8m+ek)>﹣f(﹣2m2+2m﹣1)=f(2m2﹣2m+1),
即8m+ek>2m2﹣2m+1,
即ek>2m2﹣10m+1,
设g(m)=2m2﹣10m+1,则函数的对称轴为m= =
则当m∈[﹣2,4]时,当m=﹣2时,函数g(m)取得最大值g(﹣2)=29,
即ek>g(m)max=29,
则k>ln29.
∵k是整数,
∴k的最小值是4,
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:


积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)

P(K2≥k)

050

040

025

015

010

005

0025

0010

0005

0001

k

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求 的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,(ω>0),其最小正周期为
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移 个单位,再将图象上各点的横坐标伸长到原来的4倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+m=0在区间 上有且只有一个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,菱形与正三角形所在平面互相垂直, 平面,且 .

(1)求证: 平面

2)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2ax﹣ +lnx在x=1与x= 处都取得极值. (Ⅰ) 求a,b的值;
(Ⅱ)设函数g(x)=x2﹣2mx+m,若对任意的x1∈[ ,2],总存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求实数m的取值范围.

查看答案和解析>>

同步练习册答案