【题目】已知函数f(x)= ,若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0(e是自然对数的底数),对任意的m∈[﹣2,4]恒成立,则整数k的最小值是( )
A.2
B.3
C.4
D.5
【答案】C
【解析】解:∵f(﹣x)= = =﹣ =﹣f(x), ∴函数f(x)是奇函数,
函数f(x)= .定义域为R,函数f(x)在R上是增函数.
证明:设x1 , x2是R内任意两个值,且x1<x2 .
则 = ①.
又因为x1<x2 , 所以 ,又 .
所以①<0,即f(x1)﹣f(x2)<0,即f(x1)<f(x2).
故f(x)是R上的增函数.
则不等式若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0等价为若不等式f(8m+ek)>﹣f(﹣2m2+2m﹣1)=f(2m2﹣2m+1),
即8m+ek>2m2﹣2m+1,
即ek>2m2﹣10m+1,
设g(m)=2m2﹣10m+1,则函数的对称轴为m= = ,
则当m∈[﹣2,4]时,当m=﹣2时,函数g(m)取得最大值g(﹣2)=29,
即ek>g(m)max=29,
则k>ln29.
∵k是整数,
∴k的最小值是4,
故选:C.
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求 的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,(ω>0),其最小正周期为 .
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移 个单位,再将图象上各点的横坐标伸长到原来的4倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+m=0在区间 上有且只有一个实数解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=2ax﹣ +lnx在x=1与x= 处都取得极值. (Ⅰ) 求a,b的值;
(Ⅱ)设函数g(x)=x2﹣2mx+m,若对任意的x1∈[ ,2],总存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com