精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,ABEC=2,AEBE.

(1)求证:平面EAB⊥平面ABCD
(2)求直线AE与平面CDE所成角的正弦值.

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,矩形所在的平面和平面互相垂直,等腰梯形中,=2,分别为的中点,为底面的重心.

(1)求证:∥平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
 
(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCDPDDCEPC的中点.

(1)证明:PA∥平面BDE
(2)求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,△ABC是等边三角形,DBC的中点.

(1)求证:A1B∥平面ADC1
(2)若ABBB1=2,求A1D与平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.

(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,为平行四边形,且平面的中点,

(Ⅰ) 求证://
(Ⅱ)若, 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,正方形与矩形所在平面互相垂直,,点的中点.

(1)求证:∥平面
(2)求证:
(3)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,求的值.

查看答案和解析>>

同步练习册答案