精英家教网 > 高中数学 > 题目详情

【题目】2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)

总计

喜爱

40

60

100

不喜爱

20

20

40

总计

60

80

140

(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)

(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.

附:临界值表

0.10

0.05

0.025

0.010

0.005

2.705

3.841

5.024

6.635

7.879

参考公式:

【答案】(1)见解析;(2)0.4

【解析】

(1)根据独立性检验求出,即得不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)利用古典概型求选到的两名观众都喜爱该演讲的概率.

(1)假设:观众性别与喜爱该演讲无关,由已知数据可求得,

∴ 不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.

(2)抽样比为,样本中喜爱的观众有40×=4名,

不喜爱的观众有6﹣4=2名.

记喜爱该演讲的4名男性观众为a,b,c,d,不喜爱该演讲的2名男性观众为1,2,则 基本事件分别为:(a,b),(a,c),(a,d),(a,1),(a,2),(b,c),(b,d),(b,1),(b,2),(c,d),(c,1),(c,2),(d,1),(d,2),(1,2).

其中选到的两名观众都喜爱该演讲的事件有6个,

故其概率为P(A)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin 2xcos 2x图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象上所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴方程是(  )

A. x=- B. x

C. x D. x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=3AA1=4MAA1的中点,PBC上的一点,且由P沿棱柱侧面经过棱CC1M的最短路线长为,设这条最短路线与CC1的交点为N.求:

1)该三棱柱的侧面展开图的对角线的长;

2PCNC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求出曲线的参数方程;

(Ⅱ)若分别是曲线上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (是自然对数的底数), .

(1)求曲线在点处的切线方程;

(2)求的单调区间;

(3)设,其中的导函数,证明:对任意.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是BCCD的中点,GEF的中点,现在沿AEAFEF把这个正方形折成一个空间图形,使BCD三点重合,重合后的点记为H,那么,在这个空间图形中必有(  )

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两名运动员互不影响地进行四次设计训练,根据以往的数据统计,他们设计成绩均不低于8环(成绩环数以整数计),且甲乙射击成绩(环数)的分布列如下:

(I)求 的值;

(II)若甲乙两射手各射击两次,求四次射击中恰有三次命中9环的概率;

(III)若两个射手各射击1次,记两人所得环数的差的绝对值为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1

2

3

4

5.

查看答案和解析>>

同步练习册答案