精英家教网 > 高中数学 > 题目详情

【题目】近日,某公司对其生产的一款产品进行促销活动,经测算该产品的销售量P(单位:万件)与促销费用x(单位:万元)满足函数关系:p=3﹣ (其中0≤x≤a,a为正常数).已知生产该产品件数为P(单位:万件)时,还需投入成本10+2P(单位:万元)(不含促销费用),产品的销售价格定为(4+ )元/件,假定生产量与销售量相等.
(1)将该产品的利润y(单位:万元)表示为促销费用x(单位:万元)的函数;
(2)促销费用x(单位:万元)是多少时,该产品的利润y(单位:万元)取最大值?

【答案】
(1)解:由题意知,y=(4+ )p﹣x﹣(10+2p),

将p=3﹣ 代入化简得:y=26﹣ ﹣x(0≤x≤a);


(2)解:y′=﹣

当a≥1时,x∈(0,1)时y'>0,所以函数26﹣ ﹣x在(0,1)上单调递增,

当x∈(1,a)时y'<0,所以函数26﹣ ﹣x在(1,a)上单调递减,

从而促销费用投入1万元时,厂家的利润最大;

当a<1时,因为函数26﹣ ﹣x在(0,1)上单调递增,

所以在[0,a]上单调递增,故当x=a时,函数有最大值.

即促销费用投入a万元时,厂家的利润最大.

综上,当a≥1时,促销费用投入1万元,厂家的利润最大,为23 万元;

当a<1时,促销费用投入a万元,厂家的利润最大,为26﹣ ﹣a 万元


【解析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用导数基本不等式可求出该函数的最值,注意等号成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记Sn为等比数列{an}的前n项和.已知S2=2,S3=﹣6.(12分)
(1)求{an}的通项公式;
(2)求Sn , 并判断Sn+1 , Sn , Sn+2是否能成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣1,g(x)=x+2x , h(x)=x+lnx,零点分别为x1 , x2 , x3 , 则(
A.x1<x2<x3
B.x2<x1<x3
C.x3<x1<x2
D.x2<x3<x1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,点M,N分别为线段A1B,B1C的中点.

(1)求证:MN∥平面AA1C1C;

(2)若∠ABC=90°,AB=BC=2,AA1=3,求点B1到面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边是a,b,c,已知2b﹣c=2acosC.
(1)求A;
(2)若4(b+c)=3bc,a=2 ,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosC=2b﹣c.
(1)求sinA的值;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e2x1(x2+ax﹣2a2+1).(a∈R)
(1)若a=1,求函数f(x)在(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈[﹣2,0],使得f(x2)≤g(x1)成立,则实数a的取值范围是

查看答案和解析>>

同步练习册答案