精英家教网 > 高中数学 > 题目详情
过双曲线
x2
9
-
y2
b2
=1(b>0)左焦点F1的直线l与双曲线左支交于A,B两点,若|AF2|+|BF2|(F2是双曲线的右焦点)的最小值为14,则b的值是   (  )
A、1
B、
2
C、
3
D、
6
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据双曲线的标准方程可得:a=3,再由双曲线的定义可得:|AF2|-|AF1|=2a=6,|BF2|-|BF1|=2a=6,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=12,再根据A、B两点的位置特征得到答案.
解答: 解:根据双曲线的标准方程
x2
9
-
y2
b2
=1(b>0),得:a=3,
由双曲线的定义可得:|AF2|-|AF1|=2a=6…①,
|BF2|-|BF1|=2a=6…②,
①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=12,
∵过双曲线的左焦点F1的直线交双曲线的左支于A,B两点,
∴|AF1|+|BF1|=|AB|,当|AB|是双曲线的通径时|AB|最小.
∴|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=12.
∴|BF2|+|AF2|=|AB|+12≥
2b2
3
+12=14,
∴b=
3

故选:C.
点评:本题考查两条线段和的最小值的求法,是中档题,解题时要注意双曲线的简单性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若m.n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是(  )
A、若α∥β,m⊥α,则m⊥β
B、若α∩β=m,n与α、β所成的角相等,则m⊥n
C、若m∥α,m⊥β,则α⊥β
D、若m∥n,m⊥α,则n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a3=15,a4+a6=22,Sn为{an}的前n项和.
(1)求通项公式an及Sn
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ABCD中,E,F分别是AB,BC的中点,O是EF的中点,现在沿DE,DF及EF把这个正方形折成一个四面体,使A,B,C三点重合,重合后的点记为G,则在四面体D-EFG中必有(  )
A、GF⊥△DEF所在平面
B、DO⊥△EFG所在平面
C、DG⊥△EFG所在平面
D、GO⊥△EFG所在平面

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某次飞行表演中,一架直升从空中A处测出前下方海岛两侧海岸P、Q处的俯角分别是45°和30°(如右图所示,A、P、Q在同一平面内).
(1)若直升飞机在海拔800m的高度飞行,试计算这个海岛的宽度PQ.
(2)若地面观测者测得P、Q两海岸距离大约为600m,由此试估算出观测者甲(在P处)到飞机的直线距离(精确到100m).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-a)|x|+b.
(1)当a=2,b=3,求函数y=f(x)的零点;
(2)设b=-2,且对任意x∈[-1,1],f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是计算t=12×22×…×i2的程序,程序中循环体执行的次数为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log 
1
2
(-x2+3x-4)的单调增区间为
 

查看答案和解析>>

同步练习册答案