14£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨sin$\frac{x}{2}$£¬$\frac{1}{2}$£©£¬$\overrightarrow{b}$=£¨$\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$£¬1£©£¬º¯Êýf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬¡÷ABCÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆں͵¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èôf£¨B+C£©=1£¬a=$\sqrt{3}$£¬b=1£¬Çó¡÷ABCµÄÃæ»ýS£®

·ÖÎö £¨1£©ÀûÓÃÊýÁ¿»ý¹«Ê½£¬½áºÏ¸¨Öú½Ç¹«Ê½£¬¼´¿ÉÇóf£¨x£©µÄ×îСÕýÖÜÆں͵¥µ÷µÝÔöÇø¼ä£»
£¨2£©ÏÈÇó³öB£¬¿ÉµÃC£¬ÔÙÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$f£¨x£©=\overrightarrow a•\overrightarrow b$=$\sqrt{3}sin\frac{x}{2}cos\frac{x}{2}$-$si{n}^{2}\frac{x}{2}$+$\frac{1}{2}$=sin£¨x+$\frac{¦Ð}{6}$£©£¬
Áî2k¦Ð-$\frac{¦Ð}{2}$¡Üx+$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬
½âµÃ2k¦Ð-$\frac{2¦Ð}{3}$¡Üx¡Ü2k¦Ð+$\frac{¦Ð}{3}$
ËùÒÔº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ[2k¦Ð-$\frac{2¦Ð}{3}$£¬2k¦Ð+$\frac{¦Ð}{3}$]£¨k¡ÊZ£©£®
£¨2£©ÒòΪf£¨B+C£©=1£¬ËùÒÔsin£¨B+C+$\frac{¦Ð}{6}$£©=1£¬
ÓÖB+C¡Ê£¨0£¬¦Ð£©£¬B+C+$\frac{¦Ð}{6}$¡Ê£¨$\frac{¦Ð}{6}$£¬$\frac{7¦Ð}{6}$£©£¬
ËùÒÔB+C+$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬B+C=$\frac{¦Ð}{3}$£¬ËùÒÔA=$\frac{2¦Ð}{3}$£¬
ÓÉÕýÏÒ¶¨Àí$\frac{a}{sinA}=\frac{b}{sinB}$´úÈ룬µÃµ½sinB=$\frac{1}{2}$
µÃB=$\frac{¦Ð}{6}$»òÕßB=$\frac{5¦Ð}{6}$£¬ÒòΪA=$\frac{2¦Ð}{3}$Ϊ¶Û½Ç£¬ËùÒÔB=$\frac{5¦Ð}{6}$ÉáÈ¥
ËùÒÔB=$\frac{¦Ð}{6}$£¬µÃC=$\frac{¦Ð}{6}$£®
ËùÒÔ£¬¡÷ABCµÄÃæ»ýS=$\frac{1}{2}absinC$=$\frac{1}{2}•\sqrt{3}•1•\frac{1}{2}$=$\frac{\sqrt{3}}{4}$£®

µãÆÀ ±¾Ì⿼²éÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁ½½ÇºÍÓë²îµÄÈý½Çº¯Êý¼äµÄ¹Øϵ£¬¿¼²éÕýÏÒ¶¨Àí£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º4x2+y2=16
£¨1£©ÇóÍÖÔ²CµÄ³¤Ö᳤ºÍ¶ÌÖ᳤    
£¨2£©ÇóÍÖÔ²CµÄ½¹µã×ø±êºÍÀëÐÄÂÊ
£¨3£©Ö±Ïßl£ºy=-2x+4ÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇóABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£®ÔÚƽÐÐÁùÃæÌåABCD-A1B1C1D1ÖУ®
£¨1£©Èçͼ1£¬ÒÑÖª$\overrightarrow{DA}$=$\overrightarrow{a}$£¬$\overrightarrow{DC}$=$\overrightarrow{b}$£¬$\overrightarrow{D{D}_{1}}$=$\overrightarrow{c}$£¬µãGÊDzàÃæB1BCC1µÄÖÐÐÄ£¬ÊÔÓÃÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$±íʾÏÂÁÐÏòÁ¿£º$\overrightarrow{D{B}_{1}}$£¬$\overrightarrow{B{A}_{1}}$£¬$\overrightarrow{C{A}_{1}}$£¬$\overrightarrow{DG}$£®
£¨2£©Èçͼ2£¬µãE£¬F£¬G·Ö±ðÊÇ$\overrightarrow{{A}_{1}{D}_{1}}$£¬$\overrightarrow{{D}_{1}D}$£¬$\overrightarrow{{D}_{1}{C}_{1}}$µÄÖе㣬ÇëÑ¡ÔñÇ¡µ±µÄ»ùµ×ÏòÁ¿£®Ö¤Ã÷£º¢ÙEG¡ÎAC£»¢ÚƽÃæEFG¡ÎƽÃæAB1C£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑ֪ȫ¼¯U=R£¬A={x|-1£¼x¡Ü2}£¬B={x|0¡Üx£¼4}
£¨1£©ÇóA¡ÈB£¬A¡ÉB£¬∁UB
£¨2£©Çó£¨∁UA£©¡ÉB£¬∁U£¨A¡ÉB£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Éè$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$£¬$\overrightarrow{{e}_{3}}$Ϊµ¥Î»ÏòÁ¿£¬ÇÒ$\overrightarrow{{e}_{3}}$=$\frac{1}{2}$$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$£¬£¨k£¾0£©£¬ÈôÒÔÏòÁ¿$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$ΪÁ½±ßµÄÈý½ÇÐεÄÃæ»ýΪ$\frac{1}{2}$£¬ÔòkµÄֵΪ$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÒ»×éÊý¾Ýx1¡¢x2¡¢x3¡¢¡­xnµÄƽ¾ùÊýΪ2£¬ÔòÊý¾Ý×é2x1+1¡¢2x2+1¡¢2x3+1¡¢¡­2xn+1µÄƽ¾ùÊýΪ£¨¡¡¡¡£©
A£®2B£®3C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª¼¯ºÏA={£¨x£¬y£©|$\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}¡Ü1$}£¬B={£¨x£¬y£©|x-2y¡Ü0}£¬ÇøÓòM=A¡ÉB£¬ÔòÇøÓòMµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®6B£®8C£®12D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÉèÃüÌâ¦Á£ºx£¾0£¬ÃüÌâ¦Â£ºx£¾m£¬Èô¦ÁÊǦµijä·ÖÌõ¼þ£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÉèÊýÁÐ{an}£¬{bn}£¬{an+bn}¶¼ÊǵȱÈÊýÁУ¬ÇÒÂú×ãa1=b1=1£¬a2=2£¬ÔòÊýÁÐ{an+bn}µÄÇ°nÏîºÍSn=2n+1-2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸