精英家教网 > 高中数学 > 题目详情
在△ABC中,∠A=
π
4
,D是BC边上一点(D与B、C不重合),且|
AB
|
2
=|
AD
|
2
+
BD
DC
,则∠B=
8
8
分析:先根据|
AB
|
2
=|
AD
|
2
+
BD
DC
,可确定AB=AC,再由∠A,即可求∠B的大小.
解答:解:根据题意画出相应的图形,如图所示:

过A作AO⊥BC,交BC于点O,以BC所在的直线为x轴,AO所在的直线为y轴建立平面直角坐标系,
设A(0,a),B(b,0),C(c,0),D(d,0),
|
AB
|
2
=|
AD
|
2
+
BD
DC
,∴|
AB
|
2
=|
AD
|
2
+|
BD
||
DC
|,
∴a2+b2=a2+d2+(d-b)(c-d),即d2-b2+(d-b)(c-d)=0,
∴(d+b)(d-b)+(d-b)(c-d)=0,即(d-b)(b+c)=0,
∵D与B不重合,∴d≠b,即d-b≠0,
∴b+c=0,即b=-c,
∴B与C关于y轴对称,
∴AB=AC,
∴△ABC为等腰三角形
∠A=
π
4
,∴∠B=
1
2
(π-
π
4
)=
8

故答案为:
8
点评:本题主要考查了解三角形问题,考查了学生分析问题和解决问题的能力.解题的关键是通过题设条件建立数学模型,确定△ABC为等腰三角形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂一模)已知函数f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函数f(x)的单调减区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C的对边,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)在△ABC中,a、b、c为角A、B、C所对的三边.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,设内角B为x,周长为y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则(cosA一cosC)2的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C的对边分别为a、b、c设向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知a=2,b=
7
,∠B=
π
3
,则△ABC的面积为(  )

查看答案和解析>>

同步练习册答案